Abstract

This document outlines the system design, configuration options and supported features of DA14531 SMARTBOND TINY™ MODULE Development Kit, PCB version 376-25-C.
Contents

Abstract ....................................................................................................................... 1
1 Terms and Definitions ............................................................................................ 4
2 References ................................................................................................................ 4
3 Introduction ............................................................................................................. 5
4 System Overview .................................................................................................... 6
   4.1 Features ............................................................................................................... 6
   4.2 System and components description .................................................................. 7
   4.3 Block Diagram .................................................................................................... 10
5 DA14531 SmartBond TINY™ Module Daughterboard ............................................. 11
   5.1 Power Section .................................................................................................... 11
       5.1.1 Default Power Supply Option Configuration ............................................. 11
       5.1.2 Optional USB power section ...................................................................... 12
   5.2 Reset operation .................................................................................................. 12
   5.3 General Purpose Buttons .................................................................................. 12
   5.4 General Purpose LEDs .................................................................................... 13
   5.5 MikroBUS™ Module ....................................................................................... 14
   5.6 JTAG .................................................................................................................. 16
   5.7 UART ................................................................................................................. 17
   5.8 GPIOs and pin assignment on DA14531 SMARTBOND TINY™ MODULE DB .... 17
   5.9 Programming and debugging interface setup .................................................... 19
       5.9.1 Single wire UART, JTAG, RESET ............................................................... 20
       5.9.2 2-wire UART, JTAG, RESET ....................................................................... 21
       5.9.3 4-wire UART, JTAG, RESET ....................................................................... 21
   5.10 First Steps with DA14531 SMARTBOND TINY™ MODULE DEVKIT ............ 23
6 Known Issues .......................................................................................................... 24
   6.1 Keil JTAG default Clock Speed ........................................................................ 24
Appendix A .................................................................................................................. 26
   A.1 Schematic ......................................................................................................... 26
   A.2 Placed Components .......................................................................................... 27
Revision History ......................................................................................................... 28

Figures

Figure 1: DA14531 SMARTBOND TINY™ MODULE DB .............................................. 5
Figure 2: DA14531 SMARTBOND TINY™ MODULE DEVKIT ...................................... 6
Figure 3: Component description. Top side ............................................................... 7
Figure 4: Component description. Bottom side ........................................................ 8
Figure 5: DA14531 SMARTBOND TINY™ MODULE DB Block Diagram .................... 10
Figure 6: Power option selection for DA14531 SMARTBOND TINY™ MODULE DB ...... 11
Figure 7: Power option default configuration ............................................................. 11
Figure 8: Optional USB power supply section ........................................................... 12
Figure 9: Reset Button on DA14531 SMARTBOND TINY™ MODULE DB .................. 12
Figure 10: General purpose push buttons on DA14531 SMARTBOND TINY™ MODULE DB ...... 13
DA14531 SMARTBOND TINY™ MODULE Development Kit Hardware User Manual

Figure 11: Default general purpose push button (SW2) on DA14531 SMARTBOND TINY™ MODULE DB

Figure 12: SW2 configuration on DA145xx DEVKT-P PRO-MB

Figure 13: General Purpose LEDs on DA14531 SMARTBOND TINY™ MODULE DB

Figure 14: Default LED on DA14531 SMARTBOND TINY™ MODULE DB

Figure 15: D5 LED configuration on DA145xx DEVKT-P PRO-MB

Figure 16: Default programming interface of MikroBUS™ module on DA14531 SMARTBOND TINY™ MODULE DB

Figure 17: MikroBUS™ module Socket on DA14531 SMARTBOND TINY™ MODULE DB

Figure 18: Example of mounting MikroBUS™ module

Figure 19: Optional debug port

Figure 20: DA145xx DEVKT-P PRO-MB jumper setup for Single wire UART, JTAG and RESET operation

Figure 21: DA145xx DEVKT-P PRO-MB jumper setup for 2-wire UART, JTAG and RESET operation

Figure 22: DA145xx DEVKT-P PRO-MB jumper setup for 4-wire UART, JTAG and RESET operation

Figure 23: DA145xx DEVKT-P PRO-MB First Steps Jumper Configuration with DA14531 SMARTBOND TINY™ MODULE DB attached

Figure 24: Keil reporting error when try to open debugger session

Figure 25: Steps to set up JTAG clock speed

Figure 26: Schematic of DA14531 SMARTBOND TINY™ MODULE DB [376-25-C]

Figure 27: Components on top and bottom sides for DA14531 SMARTBOND TINY™ MODULE DB [376-25-C]

Tables

Table 1: Test Points Description

Table 2: MikroBUS™ GPIOs multiplexing

Table 3: JTAG signals assignment

Table 4: DA14531 SMARTBOND TINY™ MODULE DB UART Signals

Table 5: GPIO multiplexing on DA14531 SMARTBOND TINY™ MODULE DB

Table 6: Power, SPI Flash and programming/debugging jumper setup of DA145xx DEVKT-P PRO-MB for TINY™ MODULE

Table 7: Pin assignment for DA14531 SMARTBOND TINY™ MODULE Configuration 1

Table 8: Pin assignment for DA14531 SMARTBOND TINY™ MODULE configuration 2

Table 9: Pin assignment for DA14531 SMARTBOND TINY™ MODULE configuration 3
# Terms and Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVKIT</td>
<td>Development Kit</td>
</tr>
<tr>
<td>DB</td>
<td>Daughterboard</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>JTAG</td>
<td>Join Test Action Group</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver-Transmitter</td>
</tr>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>SoC</td>
<td>System on Chip</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>LDO</td>
<td>Low Dropout</td>
</tr>
<tr>
<td>QSPI</td>
<td>Quad Serial Peripheral Interface</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>I²C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>SMD</td>
<td>Surface-Mount Device</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
</tbody>
</table>

# References


[3] DA14531_datasheet_3v0, Datasheet, Revision 3.0, Dialog Semiconductor
3 Introduction

This document describes the DA14531 SMARTBOND TINY™ MODULE Development Kit. The development kit is implemented on a single Daughterboard (DB) PCB and it comes with DA145xx DEVKT-P PRO-MB for SW development, programming, debugging and measuring current but also can be used stand alone.

The block diagram, the actual board, the various sections and settings as well as the connectivity are presented. The purpose of this Daughterboard is to provide users with the capability for:

- Access to the DA14531 SMARTBOND TINY™ MODULE, via UART or JTAG
- Connecting MikroBUS™ module
- User access to general purpose LED(s)
- User access general purpose button(s)
- Reset button
- Test points for all output signals
- Stand-alone operation

![DA14531 SMARTBOND TINY™ MODULE DB](image)

Figure 1: DA14531 SMARTBOND TINY™ MODULE DB
Figure 2: DA14531 SMARTBOND TINY™ MODULE DEVKIT

4 System Overview

4.1 Features

The features of DA14531 SMARTBOND TINY™ MODULE DB include:

- Integrated Dialog Semiconductor DA14531 SMARTBOND TINY™ MODULE
- Reset push button (SW3)
- A set of general-purpose LED and button (LED1 and SW2)
- Supply from VLDO (3V) from DA145xx DEVKT-P PRO-MB or from coin cell battery
- Capability of mounting a MikroBUS™ module (J3, J4)
- JTAG and UART interface over DA145xx DEVKT-P PRO-MB
- JTAG and UART interface over on-board header (J2)
- Stand-alone operation
- A dimension of 58.43x44.46 mm
- Optional features:
  - Power supply option from USB connector (only for power not for debugging). User must solder the components.
○ Location on board for a second set of LED and button (LED2 and SW1). User must solder the components.

### 4.2 System and components description

![Component Description](image)

**Figure 3: Component description. Top side.**

The marked and numbered sections of the system are:

1. DA14531 SMARTBOND TINY™ MODULE (U1)
2. Reset button (SW3/RESET)
3. General purpose LED (D2)
4. General purpose button (SW2)
5. JTAG debugger connector (J2)
6. GND pad (TP26)
7. Power supply configuration resistor (VLDO of PRO-MB/ Coin cell battery or USB)
8. MikroBUS™ connection points (J3, J4)
9. MikroBUS™ configuration resistors for I²C interface
10. MikroBUS™ configuration resistors for SPI interface
11. Power switch (SW4). Selection between VLDO from PRO-MB/ Coin cell battery or USB power supply. *Optional.*

12. USB power supply section with OVP circuit. *Optional.*


14. General purpose button (SW1). *Optional.*

15. General purpose LED (D1). *Optional.*

16. Mating connector on the PCB (J1).

The bottom side of the kit provides battery case for a CR2032 coin cell battery. Test points have been placed for monitoring various signal behaviors and voltage levels of the components. The marked and numbered sections of the system are:

17. Coin cell battery (BT1)

18. Test points (see Table 1 for more details)

19. Dialog label

**Table 1: Test Points Description**

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Assigned to</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>FIDUCIAL</td>
<td>Not electrically connected</td>
</tr>
<tr>
<td>TP2</td>
<td>FIDUCIAL</td>
<td>Not electrically connected</td>
</tr>
<tr>
<td>TP3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>TP7</td>
<td>SWCLK</td>
<td>JTAG Interface - Clock Signal</td>
</tr>
<tr>
<td>TP8</td>
<td>VLED1</td>
<td>Voltage level of RED LED (D1)</td>
</tr>
<tr>
<td>TP9</td>
<td>SWDIO</td>
<td>JTAG Interface DIO Signal</td>
</tr>
<tr>
<td>Test Point</td>
<td>Assigned to</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>TP10</td>
<td>VLED2</td>
<td>Voltage Level of Green LED (D2)</td>
</tr>
<tr>
<td>TP12</td>
<td>RESET</td>
<td>Reset</td>
</tr>
<tr>
<td>TP13</td>
<td>SW1</td>
<td>General purpose button (driven from P0_6 signal)</td>
</tr>
<tr>
<td>TP14</td>
<td>SW2</td>
<td>General purpose button (driven from P0_11 signal)</td>
</tr>
<tr>
<td>TP15</td>
<td>SW3</td>
<td>Reset button (driven from P0_0 signal)</td>
</tr>
<tr>
<td>TP16</td>
<td>MikroBUS™ LOGO</td>
<td>Not electrically connected</td>
</tr>
<tr>
<td>TP18</td>
<td>5V</td>
<td>USB +5V voltage level after OVP circuit</td>
</tr>
<tr>
<td>TP19</td>
<td>VBUS_IN</td>
<td>USB +5V voltage level</td>
</tr>
<tr>
<td>TP20</td>
<td>VLDO</td>
<td>LDO (U2) 3.3V output voltage level</td>
</tr>
<tr>
<td>TP21</td>
<td>VBAT_MOD</td>
<td>Power supply rail of DA14531 SMARTBOND TINY™ MODULE</td>
</tr>
<tr>
<td>TP22</td>
<td>VBAT</td>
<td>Power supply rail of VLDO of DA145xx DEVKT-P PRO-MB or external coin cell battery</td>
</tr>
<tr>
<td>TP23</td>
<td>ESD_WARNING SIGN</td>
<td>Not electrically connected</td>
</tr>
<tr>
<td>TP24</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>TP25</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>TP26</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>TP27</td>
<td>URX</td>
<td>4-wire UART RX Signal</td>
</tr>
<tr>
<td>TP28</td>
<td>UTX</td>
<td>4-wire UART TX Signal</td>
</tr>
<tr>
<td>TP29</td>
<td>UCTS</td>
<td>4-wire UART CTS Signal</td>
</tr>
<tr>
<td>TP30</td>
<td>URTS</td>
<td>4-wire UART RTS Signal</td>
</tr>
</tbody>
</table>
4.3 Block Diagram

Figure 5: DA14531 SMARTBOND TINY™ MODULE DB Block Diagram
5 DA14531 SmartBond TINY™ Module Daughterboard

5.1 Power Section

The power supply on the DA14531 SMARTBOND TINY™ MODULE DB supports three options:

- Power supply from DA145xx DEVKT-P PRO-MB. The supply voltage comes from VLDO setup (U5) with output voltage range to meet recommended operating conditions of DA14531 SmartBond TINY™ Module. See [2] for recommended operating conditions and Table 6 for VLDO selection.

- Power supply from Coin cell battery (BT1). Battery case is mounted on bottom side of the daughterboard. **Notice:** User must not mount coin cell battery when daughterboard is supplied from DA145xx DEVKT-P PRO-MB.

- +5V USB Power Supply (J6 connector) with Over Voltage Protection Circuit (OVP). **Optional.**

Using power supply from VLDO of DA145xx DEVKT-P PRO-MB, allows user to measure Current drawn from the DA14531 SmartBond TINY™ Module by using the current sensing circuit and the power profiler of Dialog’s SmartSnippets Toolbox. For more information regarding current measurement refer to [1].

5.1.1 Default Power Supply Option Configuration

Power selection between DA145xx DEVKT-P PRO-MB VLDO/ Coin Cell battery and USB Power Supply is done in two ways:

- Using resistors R41, R42:
  - R41 - Power supply from DA145xx DEVKT-P PRO-MB / Coin Cell. **Default configuration.**
  - R42 - VLDO (3.3V) of USB power section. **Optional.**

- Using SW4 power switch. **Optional.**

![Figure 6: Power option selection for DA14531 SMARTBOND TINY™ MODULE DB](image)

![Figure 7: Power option default configuration](image)
5.1.2 Optional USB power section

USB power section consists of the following parts:

- Mini Type B USB connector (J6)
- OVP circuit
- LDO (3.3V) regulator (U2)

USB power section is not populated.

![USB power section diagram]

Figure 8: Optional USB power supply section

5.2 Reset operation

Reset operation on the DA14531 SMARTBOND TINY™ MODULE can be activated with one of the following ways:

- By pressing the on board RESET button (SW3)
- Through software from the UART & JTAG interface of DA145xx DEVKT-P PRO-MB
- By pressing RESET button on DA145xx DEVKT-P PRO-MB (SW1)

Reset signal is connected to P0_0.

![Reset button diagram]

Figure 9: Reset Button on DA14531 SMARTBOND TINY™ MODULE DB

5.3 General Purpose Buttons

Push button SW2 is populated and placed on top side of the board (Figure 11). It is connected to P0_11(Figure 10) and shares the same configuration with SW2 button of DA145xx DEVKT-P PRO-MB (SW2 is connected to P3_1 on the motherboard which is P0_11 on DA14531). See Figure 12. SW1 is not populated (Figure 11). It is connected to P0_6 (Figure 10).
Figure 10: General purpose push buttons on DA14531 SMARTBOND TINY™ MODULE DB

Figure 11: Default general purpose push button (SW2) on DA14531 SMARTBOND TINY™ MODULE DB

Figure 12: SW2 configuration on DA145xx DEVKT-P PRO-MB

5.4 General Purpose LEDs

LED D2 is a general-purpose LED and it is driven by P0_9. LED D2 shares same configuration as LED D5 of DA145xx DEVKT-P PRO-MB (D5 is driven by P1_0 of motherboard which is P0_9 of DA14531). See Figure 15.

LED D1 is driven by P0_8 and it is not populated. User can mount a LED like D2.

General purpose LEDs circuitry is completed with Jumper header J5. J5 is optional and it isolates signals P0_8 and P0_9 when LEDs function is not used, so signals can be directed to other functions.
Header J5 by default is not populated. Instead resistors R39 and R40 are used in order to configure the connection of LEDs to the signals (Figure 13, Figure 14).

**Figure 13: General Purpose LEDs on DA14531 SMARTBOND TINY™ MODULE DB**

![General Purpose LEDs on DA14531 SMARTBOND TINY™ MODULE DB](image1)

**Figure 14: Default LED on DA14531 SMARTBOND TINY™ MODULE DB**

![Default LED on DA14531 SMARTBOND TINY™ MODULE DB](image2)

**Figure 15: D5 LED configuration on DA145xx DEVKT-P PRO-MB**

![D5 LED configuration on DA145xx DEVKT-P PRO-MB](image3)

### 5.5 MikroBUS™ Module

The DA14531 SMARTBOND TINY™ MODULE DB can support MikroBUS™ modules. It requires some level of GPIOs multiplexing to avoid conflict with other functions driven by same GPIOs.

A MikroBUS™ module requires a power supply of 5V, 3.3V or both, depending on the module. The current configuration of the daughterboard supports only 3.3V. If a voltage of 5V is required, then USB power section needs to be populated.
Signals available for MikroBUS™ module can be seen in the Table 2. I²C signals and INT are the default configuration for the MikroBUS™ module. For SPI interface and RST additional resistors must be populated (Figure 16, Figure 17).

DA14531 SMARTBOND TINY™ MODULE DB MikroBUS™ doesn’t share same GPIO signals as DA145xxx DEVKT-P PRO-MB MikroBUS™.

![Figure 16: Default programming interface of MikroBUS™ module on DA14531 SMARTBOND TINY™ MODULE DB](image)

![Figure 17: MikroBUS™ module Socket on DA14531 SMARTBOND TINY™ MODULE DB](image)

<table>
<thead>
<tr>
<th>DA14531 SMARTBOND TINY™ MODULE GPIOs</th>
<th>Peripherals</th>
<th>I²C</th>
<th>SPI</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0_6</td>
<td>SW1</td>
<td>SCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_11</td>
<td>SW2 (default)</td>
<td>SDA</td>
<td>MISO</td>
<td></td>
</tr>
<tr>
<td>P0_8</td>
<td>LED D1</td>
<td>SCL (default)</td>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>P0_9</td>
<td>LED D2</td>
<td></td>
<td>MOSI</td>
<td></td>
</tr>
<tr>
<td>P0_7</td>
<td></td>
<td></td>
<td>INT (default)</td>
<td>RST</td>
</tr>
</tbody>
</table>
5.6 JTAG

DA14531 SMARTBOND TINY™ MODULE DB provides JTAG interface with SWDIO and SWCLK signals assigned to P0_2 and P0_10 (Table 3). JTAG signals are also available on header J2 (Figure 19).

<table>
<thead>
<tr>
<th>Function</th>
<th>The Signals</th>
<th>DA145xx DEVKT-P PRO-MB</th>
<th>DA14531 SMARTBOND TINY™ MODULE DEVKIT</th>
<th>DA14531 SMARTBOND TINY™ MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled by Jumpers (on PRO-MB)</td>
<td>J2</td>
<td>J1:21-22 (Default)</td>
<td>SWCLK</td>
<td>P0_2</td>
</tr>
<tr>
<td>SW_CLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW_DIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 18: Example of mounting MikroBUS™ module

Figure 19: Optional debug port
5.7 UART

Three modes of UART can be used: single wire UART, 2 wire-UART or full UART.

Table 4: DA14531 SMARTBOND TINY™ MODULE DB UART Signals

<table>
<thead>
<tr>
<th>Function</th>
<th>The signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DA145xx DEVKT PRO- MB J2 J1</td>
</tr>
<tr>
<td>UTX 2-wire or Full UART Transmit</td>
<td>P2_6</td>
</tr>
<tr>
<td>URX 2-wire or Full UART Receive</td>
<td>P2_5</td>
</tr>
<tr>
<td>UCTS 2-wire or Full UART Clear to Send</td>
<td>P2_8</td>
</tr>
<tr>
<td>URTS 2-wire or Full UART Request to Send</td>
<td>P2_7</td>
</tr>
<tr>
<td>RxTx Single wire UART Receive and Transmit</td>
<td>P2_5</td>
</tr>
</tbody>
</table>

Note 1 UART signals are directly mapped to J1 connector of DA145xx DEVKT-P PRO-MB: Rx, Tx, RTS and CTS.

For enabling the different configurations check section 5.8.

5.8 GPIOs and pin assignment on DA14531 SMARTBOND TINY™ MODULE DB

The DA14531 SMARTBOND TINY™ MODULE DB comes in with a pre-defined default configuration. However, due to the low GPIO pin count, several functions are multiplexed and can be enabled as needed.

On Table 5 DA14531 SMARTBOND TINY™ MODULE GPIOs use on the various functions can be found. On the last column of the table users can check which of the functions are enabled by default with the default hardware setup and which require some hardware modification by adding resistors.

Table 5: GPIO multiplexing on DA14531 SMARTBOND TINY™ MODULE DB

<table>
<thead>
<tr>
<th>DA14531 SMARTBOND TINY™ MODULE Signals</th>
<th>J1 connector Daughterboard</th>
<th>Function 1</th>
<th>Function 2</th>
<th>Function 3</th>
<th>Comments for functions supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0_0</td>
<td></td>
<td>SW3 (RESET Button)</td>
<td></td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td>P0_2</td>
<td></td>
<td>MB2_0</td>
<td></td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESET</td>
<td>RESET on J2 JTAG connector</td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB2_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWCLK</td>
<td>SWCLK JTAG connector (J2)</td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td>J1 connector Daughterboard</td>
<td>Function 1</td>
<td>Function 2</td>
<td>Function 3</td>
<td>Comments for functions supported</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>MB2_5</td>
<td>RxTx (1-wire UART)</td>
<td>URX (2-wire) on JTAG connector (J2)</td>
<td>R36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB0_5</td>
<td>URx (4-wire UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_6</td>
<td>SW1 (User button)</td>
<td>UTx (2-wire) on JTAG connector (J2)</td>
<td>R7, SW1</td>
<td>R35</td>
<td>R13</td>
</tr>
<tr>
<td>MB2_6</td>
<td>UTx (4-wire UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB0_4</td>
<td>UTx (4-wire UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_7</td>
<td>MikroBUS™ RST</td>
<td>MikroBUS™ INT</td>
<td>R10</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>MB2_7</td>
<td>URTS (4-pin UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB0_7</td>
<td>URTS (4-pin UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_8</td>
<td>RED LED (D1)</td>
<td>MikroBUS™ CS</td>
<td>MikroBUS™ SCL</td>
<td>D1, R1, R39 or J5</td>
<td>R11</td>
</tr>
<tr>
<td>MB2_8</td>
<td>UCTS (4-pin UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB0_6</td>
<td>UCTS (4-pin UART)</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_9</td>
<td>GREEN LED (D2)</td>
<td>MikroBUS™ MOSI</td>
<td>Default</td>
<td>R16</td>
<td></td>
</tr>
<tr>
<td>MB2_9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB3_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB3_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2020 Dialog Semiconductor
5.9 Programming and debugging interface setup

On this section the settings required for configuring the PRO-MB development kit for DA14531 SMARTBOND TINY™ MODULE are described:

- DA14531 SMARTBOND TINY™ MODULE DB
- DA145xx DEVKT-P PRO-MB

Configurations applied by adding/removing jumpers on the DA145xx DEVKT-P PRO-MB. No modification is required on the DA14531 SMARTBOND TINY™ MODULE DB.

Please notice that the SPI flash on DA145xx DEVKT-P PRO-MB will not be used as DA14531 SMARTBOND TINY™ MODULE has integrated QSPI Flash. See Table 6.

The settings of three configurations are presented:

- Configuration 1: Single wire UART, JTAG and RESET
- Configuration 2: UART (2 wires), JTAG and RESET
- Configuration 3: Full UART, JTAG and RESET

Table 6: Power, SPI Flash and programming/debugging jumper setup of DA145xx DEVKT-P PRO-MB for TINY™ MODULE

<table>
<thead>
<tr>
<th>Device</th>
<th>Configuration</th>
<th>Setting</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI Data Flash</td>
<td>Use SPI Data Flash of DA14531 SMARTBOND TINY™ MODULE</td>
<td>Remove J1: 1-2, J1: 3-4, J1: 5-6, J1: 7-8, J1: 9-10</td>
<td>Remove jumpers from J1 connector that enable PRO-MB SPI Data Flash</td>
</tr>
<tr>
<td>Voltage provided to DA14531 (VLDO)</td>
<td></td>
<td>J9: 1-2, J9: 3-4</td>
<td>Current sense circuit of PRO-MB</td>
</tr>
<tr>
<td>1.8V</td>
<td>J5: 1-3</td>
<td></td>
<td>Default voltage for TINY™ MODULE</td>
</tr>
<tr>
<td>3.0V</td>
<td>J5: 2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3V</td>
<td>J5: 1-3, J5: 2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA14531 DCDC configuration</td>
<td>Buck</td>
<td>J4: 3-4</td>
<td>Power mode of TINY™ MODULE</td>
</tr>
<tr>
<td>2-wire UART</td>
<td></td>
<td>J1: 15-16, J1: 17-18</td>
<td></td>
</tr>
<tr>
<td>4 wire UART</td>
<td></td>
<td>J1: 11-12, J1: 13-14, J1: 15-16, J1: 17-18</td>
<td></td>
</tr>
</tbody>
</table>
### 5.9.1 Single wire UART, JTAG, RESET

Table 7: Pin assignment for DA14531 SMARTBOND TINY™ MODULE Configuration 1

<table>
<thead>
<tr>
<th>Configuration</th>
<th>P0_0</th>
<th>P0_2</th>
<th>P0_5</th>
<th>P0_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1  JTAG &amp; single UART</td>
<td>Reset</td>
<td>SWLCK</td>
<td>RxTx</td>
<td>SWDIO</td>
</tr>
</tbody>
</table>

Figure 20: DA145xx DEVKT-P PRO-MB jumper setup for Single wire UART, JTAG and RESET operation
5.9.2 2-wire UART, JTAG, RESET

Table 8: Pin assignment for DA14531 SMARTBOND TINY™ MODULE configuration 2

<table>
<thead>
<tr>
<th>Configuration</th>
<th>P0_0</th>
<th>P0_2</th>
<th>P0_6</th>
<th>P0_5</th>
<th>P0_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 JTAG &amp; 2 wire UART</td>
<td>Reset</td>
<td>SWLCK</td>
<td>Tx</td>
<td>Rx</td>
<td>SWDIO</td>
</tr>
</tbody>
</table>

Figure 21: DA145xx DEVKT-P PRO-MB jumper setup for 2-wire UART, JTAG and RESET operation

5.9.3 4-wire UART, JTAG, RESET

Table 9: Pin assignment for DA14531 SMARTBOND TINY™ MODULE configuration 3

<table>
<thead>
<tr>
<th>Configuration</th>
<th>P0_0</th>
<th>P0_2</th>
<th>P0_6</th>
<th>P0_5</th>
<th>P0_7</th>
<th>P0_8</th>
<th>P0_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 JTAG &amp; 2 wire UART</td>
<td>Reset</td>
<td>SWLCK</td>
<td>Tx</td>
<td>Rx</td>
<td>RTS</td>
<td>CTS</td>
<td>SWDIO</td>
</tr>
</tbody>
</table>
Figure 22: DA145xx DEVKT-P PRO-MB jumper setup for 4-wire UART, JTAG and RESET operation
5.10 First Steps with DA14531 SMARTBOND TINY™ MODULE DEVKIT

The DA145xx DEVKT-P PRO-MB as well as DA14531 SMARTBOND TINY™ MODULE DB come in with a pre-defined default configuration. The initial steps that must be taken when the Daughterboard is mounted on the PRO-MB are depicted in Figure 23.

Figure 23: DA145xx DEVKT-P PRO-MB First Steps Jumper Configuration with DA14531 SMARTBOND TINY™ MODULE DB attached

**Steps to be followed:**

1. Remove SPI Data Flash Jumpers J1 1:2, 3:4, 5:6, 7:8, 9:10
2. Remove J5 1:3 header (LDO(U5) output at 3.0V)
4. Leave J9 1:2, 3:4 (current measurement circuit)
5. Leave J4 3:4 (Buck mode)
6. Leave J8 as is (in case a MikroBUS™ module is used J8 is advised to be removed)
7. Leave J19 as is (in case a MikroBUS™ module is used J19 2:3 is advised to be removed)
8. Configure UART operation as per configuration 1, 2 or 3

6 Known Issues

6.1 Keil JTAG default Clock Speed

When trying to program DA14531 SMARTBOND TINY™ MODULE using Keil the following error may occur when the user tries to open the debugger session (Figure 24).

![Figure 24: Keil reporting error when try to open debugger session](file.png)

User must lower the JTAG clock speed to 2MHz following the steps depicted in Figure 25.

![Figure 25: Steps to set up JTAG clock speed](file.png)

Steps to be followed:

1. Open options for Target device
2. Choose Debug Tab
3. Press settings for J-Link/ J-TRACE Cortex
4. Change default max clock speed from 5MHz to 2MHz
5. Press Scan to detect the ARM Core
Appendix A

A.1 Schematic

Figure 26: Schematic of DA14531 SMARTBOND TINY™ MODULE DB [376-25-C]
A.2 Placed Components

Figure 27: Components on top and bottom sides for DA14531 SMARTBOND TINY™ MODULE DB [376-25-C]
# Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;&gt;</td>
<td>&lt;DD-Mmm-YYYY&gt;</td>
<td>Latest revision. Summary of important changes.</td>
</tr>
<tr>
<td>1.0</td>
<td>10-04-2020</td>
<td>Initial version.</td>
</tr>
<tr>
<td>1.1</td>
<td>11-05-2020</td>
<td>Chapter 6 with Known Issues added.</td>
</tr>
</tbody>
</table>
Status Definitions

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAFT</td>
<td>The content of this document is under review and subject to formal approval, which may result in modifications or additions.</td>
</tr>
<tr>
<td>APPROVED or unmarked</td>
<td>The content of this document has been approved for publication.</td>
</tr>
</tbody>
</table>

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD
Phone: +44 1793 757700

Germany
Dialog Semiconductor GmbH
Phone: +49 7021 805-0

The Netherlands
Dialog Semiconductor B.V.
Phone: +31 73 640 8822
Email: enquiry@diasemi.com

North America
Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan
Dialog Semiconductor K. K.
Phone: +81 3 5769 5100

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222

Web site: www.dialog-semiconductor.com

Hong Kong
Dialog Semiconductor Hong Kong
Phone: +852 2607 4271

Korea
Dialog Semiconductor Korea
Phone: +82 2 3469 8200

Email: webmaster@diasemi.com

Contact: +852 2607 4271

China (Shenzhen)
Dialog Semiconductor China
Phone: +86 755 2981 3669

China (Shanghai)
Dialog Semiconductor China
Phone: +86 21 5424 9058

Contact: +86 21 5424 9058

Email: sales@diasemi.com

Web site: www.dialog-semiconductor.com

User Manual Revision 1.1 11-05-2020

CFR0012 29 of 29 © 2020 Dialog Semiconductor