The focus of this User Manual is to easily introduce the IoT Multi sensor Kit. This is a reference design which include IoT Sensors Reference Application. This reference design integrates a number of sensors and provides to the user a sensor fusion experience using the IoT Sensors Android/iOS Application.
UM-B-102

DA14585 Getting Started Guide with the IoT Multi Sensor Development Kit

Contents

Contents .. 2
Figures ... 3
Tables ... 3
1 Abstract .. 4
2 Terms and Definitions .. 4
3 Introduction ... 5
 3.1 How long should it take? ... 5
 3.2 Block Diagram ... 5
 3.3 Key Features .. 6
4 Kit Content .. 6
5 System Requirements ... 7
6 Hardware Description .. 7
 6.1 PCB and Board Layout: ... 7
 6.2 Sensors Overview .. 8
 6.2.1 Environmental Sensor .. 8
 6.2.2 Motion Sensor: Accelerometer/Gyroscope .. 9
 6.2.3 Audio Sensor: Microphone .. 9
 6.2.4 Electronic Compass (Magnetometer) ... 10
 6.2.5 Barometric Pressure Sensor ... 10
 6.2.6 Optical Sensor: Ambient Light and IR Proximity .. 10
 6.3 Buttons and LEDs .. 10
 6.4 NOR Flash Memory .. 11
 6.5 Power Supply .. 11
7 Software Downloading and Programming .. 14
 7.1 Drivers and Tools .. 14
 7.1.1 SmartSnippets™ Installation .. 14
 7.1.2 KEIL Installation ... 16
 7.2 Development Software Source ... 16
8 Run the pre-loaded Demo .. 18
9 Build Your First IoT Application ... 21
 9.1.1 How to Start Development .. 21
 9.2 Flash Programming in MSK Applications ... 22
 9.3 Beacon Reference Applications .. 26
 9.3.1 Building and Running the Example .. 26
10 Appendices .. 30
 10.1 Appendix A: Memory Map .. 30
 10.2 Appendix B: Enclosure ... 30
 10.3 Appendix C: mkimage script steps ... 31
11 Revision History .. 33
Figures

Figure 1: DA14585 IoT Multi Sensor Kit ... 4
Figure 2: DA14585 IoT MSK Block Diagram ... 5
Figure 3: PCBA of a DA14585 IoT MSK: Top View .. 7
Figure 4: PCBA of DA14585 IoT MSK: Bottom View ... 8
Figure 5: Battery Connection .. 12
Figure 6: Connection between DA14585 IoT MSK and the CIB 12
Figure 7: Communication Interface Board Layout .. 13
Figure 8: SmartSnippets Studio Install Link ... 14
Figure 9: Automatically Install J-Link ... 15
Figure 10: Automatically Install J-Link ... 15
Figure 11: VCOM on the Debugger ... 16
Figure 12: IoT MSK Software SDK Directory Structure .. 17
Figure 13: Quick Start with IoT MSK: Flow Diagram ... 18
Figure 14: Cloud setting ... 19
Figure 15: Applications: Historical Data ... 19
Figure 16: IoT Sensors Reference Application State Machine 20
Figure 17: IoT Sensors Reference Application State Machine 21
Figure 18: mkimage Scripts and Application Location ... 23
Figure 19: Available mkimage Scripts .. 23
Figure 20: Flash Programming with SmartSnippets Studio 24
Figure 21: SPI Flash Programmer Bootable option ... 24
Figure 22: Smart Tag Application ... 25
Figure 23: About Flash Programming Procedure ... 25
Figure 24: Locating the Beacon ... 28
Figure 25: Connecting with the DA14585 Eddystone Beacon 29
Figure 26: EDDYSTONE-TLM Data ... 29
Figure 22: Analyzing a Flash Memory Image ... 30
Figure 23: DA14585 IoT MSK Enclosure: Bottom/Top View 30
Figure 18: Convert .hex to .bin ... 31
Figure 19: Create a Single Image from a Binary .. 31
Figure 20: Create Another Single Image from a Binary .. 32
Figure 21: Create a Multi-Image from the Two Single Images 32

Tables

Table 1: DA14585 IoT MSK Top Main Devices ... 7
Table 2: DA14585 IoT MSK Bottom Main Devices ... 8
Table 3: GPIOs for Buttons and LEDs ... 10
Table 4: GPIOs for the Flash Memory ... 11
Table 5: Communication Interface Board (CIB) ... 13
Table 6: Beacon Reference Applications ... 26
Table 7: Revision History .. 33
Abstract

Dialog Semiconductor has created the DA14585 IoT Multi Sensor Development Kit (MSK) to help IoT device designers and engineers accelerate building their development platforms for designing IoT applications and solutions. This guide is intended to be an easy introduction to the IoT MSK. No experience of programming microcontrollers or the cloud is required. It helps with the setup of the hardware development environment, installing the required software, and downloading and running an example application on the MSK.

Figure 1: DA14585 IoT Multi Sensor Kit

2 Terms and Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE</td>
<td>Bluetooth Low Energy</td>
</tr>
<tr>
<td>COM</td>
<td>Communication Port</td>
</tr>
<tr>
<td>e-CO2</td>
<td>Equivalent CO2</td>
</tr>
<tr>
<td>GATT</td>
<td>Generic Attribute Profile</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input/Output</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>AQI</td>
<td>Air Quality Indoor</td>
</tr>
<tr>
<td>iOS</td>
<td>iPhone OS</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group (test interface)</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>MSK</td>
<td>Multi Sensor Development Kit</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>OTP</td>
<td>One Time Programmable</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PDM</td>
<td>Pulse Density Modulation</td>
</tr>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>SOC</td>
<td>System On Chip</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static Random Access Memory</td>
</tr>
<tr>
<td>SUOTA</td>
<td>Software Update over the Air</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>SWD</td>
<td>Serial Wire Debug</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver/Transmitter</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Oxide Compound</td>
</tr>
</tbody>
</table>
3 Introduction

The IoT MSK is based on DA14585 (a SmartBond™ Bluetooth Low Energy SoC) and a number of motion and environmental sensors. The DA14585 SoC is an optimized version of DA14580, offering a reduced boot time and supporting up to eight connections. It has a fully integrated radio transceiver and baseband processor for Bluetooth Low Energy. It can be used as a standalone application processor or as a data pump in hosted systems.

The IoT MSK board embeds a 2-Mbit QSPI Flash memory that can be used to store the downloaded software images over the SUOTA (Software Update Over The Air) profile and can also serve as storage for the second bootloader. Programming the IoT MSK is easy. There are two user manuals focusing on Software and Hardware details respectively.

Users can build a rich cloud application with the data from this IoT MSK in just a few steps. In addition, the cloud applications provided by Dialog can be used to monitor the data from the IoT MSK sensors and program IFTTT events.

NOTE

The key aspects of the hardware/software of the IoT MSK are explained in detail in this user manual. A Quick Start Guide is also available.

3.1 How long should it take?

This tutorial requires 30-40 minutes to complete. For more information the user may consult the accompanied documentation these are mentioned as for further reading.

3.2 Block Diagram

![Figure 2: DA14585 IoT MSK Block Diagram](image-url)
3.3 Key Features

- Highly integrated DA14585 Bluetooth® Smart SoC from Dialog Semiconductor
- Standalone module
- Low cost due to printed antenna
- Low cost PCB
- Combined sensors
 - Audio
 - Microphone with single-bit PDM output
 - Gas and Environmental Sensor
 - Temperature
 - Humidity
 - Pressure
 - Air quality (b-VOC and AQI)
 - Motion Sensor
 - Combined accelerometer/gyroscope sensor unit
 - Magneto Sensor
 - Optical Sensor
 - Ambient Light Sensor and Infrared proximity
- Access to processor via JTAG and UART from the enclosure
- Programmable RF power up to +9.3 dBm
- Three LED indicators
- General purpose push button
- Expansion slots
- Powered by two low cost AAA alkaline batteries

4 Kit Content

This section describes the required hardware and software to start using the IoT MSK. The IoT MSK can be ordered via various distributors with Digikey or Mouser.

Inside the IoT MSK package you will find:
- IoT Multi Sensor Kit board
- Programming interface board
- Mini USB cable
- Quick Start Guide
Download the development SW source. The Dialog IoT Sensors Mobile Application can be downloaded from App Store or Google Play. The schematics, PCB, Gerber files, Alegro files, and bill of materials (BOM) are available for download through this link.

5 System Requirements

The IoT MSK is programmed with a preloaded demo. To run it, you need a central device (smartphone or tablet) with 4.3 (minimum) or 8.0 (minimum) operating systems and BLE technology 4.0 (minimum).

To start developing IoT applications, you need Windows™ Operating System, (ver. 7 or higher) and KEIL development environment.

6 Hardware Description

This section gives an overview of the design architecture of the IoT MSK. For further reading more details are provided in UM-B-095.

6.1 PCB and Board Layout:

The top view layout of the IoT MSK is shown in Figure 3. The IoT MSK Enclosure Bottom/Top view is given in Appendix B: Enclosure.

![Figure 3: PCBA of a DA14585 IoT MSK: Top View](image)

Table 1: DA14585 IoT MSK Top Main Devices

<table>
<thead>
<tr>
<th>Reference</th>
<th>Device Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSS-I4B20-SMT</td>
<td>Magnetic buzzer transducer from CUI INC.</td>
</tr>
<tr>
<td>2</td>
<td>U7: MX25R2035FZU10L</td>
<td>Serial NOR Flash memory</td>
</tr>
<tr>
<td>3</td>
<td>U2: SKY66111-11</td>
<td>Power Amplifier from Skyworks</td>
</tr>
<tr>
<td>4</td>
<td>D1: Yellow LED</td>
<td>LED</td>
</tr>
</tbody>
</table>
Table 2: DA14585 IoT MSK Bottom Main Devices

<table>
<thead>
<tr>
<th>Reference</th>
<th>Device Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port</td>
<td>Debugging Connector</td>
</tr>
<tr>
<td>2</td>
<td>Battery</td>
<td>2x AAA Battery Holder</td>
</tr>
<tr>
<td>3</td>
<td>Switch</td>
<td>Power ON/OFF switch</td>
</tr>
</tbody>
</table>

6.2 Sensors Overview

The IoT MSK includes an accelerometer/gyro sensor, digital microphone, Gas (CO2) sensor, and an infrared proximity combined with an ambient light sensor in a single package. These sensors which can be accessed from the IoT MSK over the I2C, SPI, and PDM (Audio) interfaces.

6.2.1 Environmental Sensor

The DA14585 IoT MSK employs the BME680 from Bosch Sensortec to detect environmental changes such as temperature, humidity, atmospheric pressure, and e-CO2. This highly compacted sensor is
suitable for monitoring indoor air quality and can detect air contamination from paint, furniture, garbage, and others, using volatile oxide compound (VOC) levels. From the VOC readings, two air quality parameters can be displayed using smart algorithms: the indoor air quality index (IAQ) and the e-CO2. This sensor is connected to DA14585 via an I²C interface.

6.2.2 Motion Sensor: Accelerometer/Gyroscope

The DA14585 IoT MSK employs the ICM42605 motion sensor from TDK InvenSense that combines a 3-axis gyroscope and a 3-axis accelerometer with the following features:

- user-programmable interrupts
- wake-on-motion interrupt for low power operation of applications processor

The ICM42605 module is connected to DA14585 via an SPI interface which supports speeds up to 24 MHz.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: In full operation mode with the accelerometer and gyroscope enabled, the current consumption is typically 0.72 mA. This drops to 11 μA in sleep mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: For additional flexibility, the DA14585 IoT MSK is equipped with an additional PCB footprint of an alternative accelerometer/gyroscope sensor: BMI160. The ICM42605 should be unsoldered before using BMI160.</td>
</tr>
</tbody>
</table>

6.2.3 Audio Sensor: Microphone

The SPK0838HT4H-B from Knowles is a miniature, high-performance, low-power, and top-port silicon digital microphone with a single-bit PDM output. Due to its high power consumption in sleep mode, it is supplied via a dedicated GPO from the GPIO expander.

<table>
<thead>
<tr>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>The microphone is not supported by the software reference applications provided with the DA14585 IoT MSK.</td>
</tr>
</tbody>
</table>
6.2.4 Electronic Compass (Magnetometer)

The DA14585 IoT MSK employs an electronic compass (magnetometer) sensor from Asahi Kasei, the AK09915C. It incorporates:

- a magnetic sensor for detecting terrestrial magnetism in the X-axis, Y-axis, and Z-axis
- a sensor driving circuit
- a signal amplifier chain
- an arithmetic circuit for processing signals from each sensor off-loading the main processing unit
- self-test function

The magnetic sensor is connected to the DA14585 via an SPI interface.

6.2.5 Barometric Pressure Sensor

The DA14585 IoT MSK employs a high-accuracy, low-power, and waterproof barometric pressure sensor from TDK InvenSense, ICP10100, for atmospheric pressure detection. This barometric pressure sensor is connected to DA14585 via an I²C interface.

Warning

This sensor is not mounted on this reference design and is not supported by the software reference applications provided with the DA14585 IoT MSK. Users wanting to use this sensor need to do the soldering themselves.

6.2.6 Optical Sensor: Ambient Light and IR Proximity

The DA14585 IoT MSK has an on-board ambient light and IR proximity sensor from Vishay, VCNL4010. This sensor is fully integrated as the IR LED emitter is included in the package. It is connected to DA14585 via the I²C interface.

Potential applications include:

- display contrast/brightness control
- proximity switch for consumer electronics, display, and devices
- dimming control

6.3 Buttons and LEDs

The IoT MSK is equipped with a general purpose user push button and three LED indicators. GPIOs for Buttons and LEDs shows the GPIO (DA14585 GPIO and the GPIO expander) pin assignment.

Table 3: GPIOs for Buttons and LEDs

<table>
<thead>
<tr>
<th>GPIO Expander GPO 0</th>
<th>Yellow LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO Expander GPO 2</td>
<td>Red LED</td>
</tr>
<tr>
<td>GPIO Expander GPO 4</td>
<td>Green LED</td>
</tr>
<tr>
<td>P1_3</td>
<td>Push button</td>
</tr>
</tbody>
</table>

User Manual Revision 1.1 15-Feb-2019
6.4 NOR Flash Memory

The DA14585 IoT MSK uses an external Serial NOR Flash memory to mirror its contents to RAM and execute the content. The Flash memory type is **MX25R2035FZUIL0**.

- 2-Mbit QSPI Flash memory, operated in single I/O mode.
- Operating voltage: 1.65 V to 3.6 V for read, erase, and program operations.
- 8USON package.

Table 4: GPIOs for the Flash Memory

<table>
<thead>
<tr>
<th>GPIO</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0_0 (SPI_CLK)</td>
<td>SPI clock</td>
</tr>
<tr>
<td>P0_3 (SPI_CS)</td>
<td>SPI chip select</td>
</tr>
<tr>
<td>P0_6 (SPI_MOSI)</td>
<td>SPI_MOSI</td>
</tr>
<tr>
<td>P0_5 (SPI_MISO)</td>
<td>SPI_MISO</td>
</tr>
</tbody>
</table>

Note

A pull-up resistor has been added in series with the chip select (CS) pin. This allows the CS pin to follow the voltage applied to the VCC pin during power-up and power-down which keeps the device not selected.

6.5 Power Supply

By default, IoT MSK is powered by two **AAA batteries** in the battery holder (BT1) which supply a 3 V voltage as shown in Figure 5. Another option is to use a **JTAG** supply. The two-position ON/OFF switch (SW2) is used to select between these options.
If the IoT MSK is powered using JTAG:

1. Plug in the USB cable to the micro-USB header on the communication interface board (CIB). The other side of the USB cable can be connected to a PC.
2. Set the MSK side switch to OFF to cut off the battery and turn the CIB switch SW2 to ON to provide power to the MSK.
3. Connect an IDC-10 cable to the 1.27 mm pitch header (10) on the CIB. Connect the other end of the IDC-10 cable to the debugging port on the bottom of the DA14585 IoT MSK.

The connection between the CIB and DA14585 IoT MSK is shown in Figure 6.
Table 5: Communication Interface Board (CIB)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mini USB Connector</td>
</tr>
<tr>
<td>2</td>
<td>VDD select, 1.8 V or 3 V</td>
</tr>
<tr>
<td>3</td>
<td>VPP enable (6.8 V)</td>
</tr>
<tr>
<td>4</td>
<td>VPP LED indicator</td>
</tr>
<tr>
<td>5</td>
<td>Target board connection header (2.54 mm pitch)</td>
</tr>
<tr>
<td>6</td>
<td>Output signals</td>
</tr>
<tr>
<td>7, 8</td>
<td>GND support points</td>
</tr>
<tr>
<td>9</td>
<td>Current measurement point</td>
</tr>
<tr>
<td>10</td>
<td>Target board connection header (1.27 mm pitch)</td>
</tr>
<tr>
<td>11</td>
<td>VDD LED indicator</td>
</tr>
<tr>
<td>12</td>
<td>Reset button</td>
</tr>
<tr>
<td>13</td>
<td>VDD ON/OFF switch</td>
</tr>
<tr>
<td>14</td>
<td>MCU LED indicator</td>
</tr>
<tr>
<td>15</td>
<td>MCU with Segger license</td>
</tr>
</tbody>
</table>

Note

For further reading more information about the CIB, refer to Communication Interface Board User Manual, UM-B-065
7 Software Downloading and Programming

This section contains reference information about the software required for downloading and programming.

7.1 Drivers and Tools

7.1.1 SmartSnippets™ Installation

This section describes the installation of SmartSnippets Studio. For further reading the installation procedure is described in detail in UM-B-057 SmartSnippets Studio User Manual.

A summary of the steps is given here.

1- Download the latest version of SmartSnippets™ Studio from Software and tools, as shown in Figure 8

![SmartSnippets Studio Install Link](https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-energy/smartband-da14585-and-da14586)

Figure 8: SmartSnippets Studio Install Link

- The SmartSnippets™ version should be 2.0.6 and above if you wish to use Eclipse/GCC.
- Registration is required in order to download the SmartSnippets™.

2- Run the SmartSnippets™ Studio installer (.msi). Several of the required tools are automatically installed, others need to be manually downloaded and installed.

3- Select to install the latest version of SEGGER J-Link GDB server and click **Next**.
4- Select the destination folder for the SmartSnippets™ Studio and click **Next**

The SmartSnippets™ Studio is Now installed.
Note

The communication interface board (CIB) includes an MCU embedded J-Link debugger, see Figure 7. This ensures the USB to JTAG function by loading the software from Segger to the internal ROM. This debugger provides also a virtual COM port to the PC/laptop as shown in Figure 11.

Figure 11: VCOM on the Debugger

7.1.2 KEIL Installation

KEIL µVision IDE must be downloaded and installed separately, registration is required.

1. Download and install the Keil tools from https://www.keil.com/demo/eval/arm.htm.

Note

- The Keil development tools can be run as a Free/Lite version without a product license. (File > License Management). The Free/Lite version offers 32KB code limitation and may be used for SmartTag and Beacon applications. Because of this limitation the Keil environment can’t be used for the IoT Sensors application, if the user does not own µVision Keil License he may choose and activate an evaluation License that offers full functionality for limited time.
- The recommended µVision version is v5.23.0.0.

Note

Note: Need help? Please contact Dialog BLE Software Forum.

7.2 Development Software Source

The directory structure of the IoT MSK Software SDK is shown in Figure 12. The IoT MSK application software runs on multi-sensor development kit design. The software firmware package contains five reference applications:

- The IoT sensors application
- The proximity tag application (SmartTag)
- Three beacon applications
The DA14585 IoT Multi Sensor Development SW Source can be downloaded from the customer support web page.

Note

For further reading additional information about the software architecture, see Development Kit Developer’s Guide UM-B-101. This document describes the architecture and implementation details of DA14585 IoT MSK reference design and the supporting applications.

Figure 12: IoT MSK Software SDK Directory Structure

- **Beacon Reference Applications**
- **IoT sensors Reference Application**
- **Smart Tag Reference Application**
- **This directory contains BLE stack related Files**
- **This directory contains the platform specific files for the ARM Cortex-M0 processor and its supported peripherals (BLE, Serial Interfaces, GPIOs, etc)**
- **This directory holds utilities and tools that supplement the SDK**
8 Run the pre-loaded Demo

This section explains how the user can build, program, Figure 13 shows how to run the pre-loaded demo. These steps are already described in the Quick Start which is included in IoT MSK box.

As an option, user may enable the cloud functionality Figure 14 (Internet availability is required). The IoT MSK Cloud feature allows data that are collected by the sensors on the IoT MSK to be uploaded to the cloud. The data on the cloud can be used in several ways:

- View historical data for a range of time. Example: View temperature logged over the 3 last days. Refer to Figure 15.
- Set triggers to receive E-mails when sensor data meet a condition. Example: If brightness is below 15 lumens send me an E-mail
- Control the IoT MSK Led when cloud conditions are met. Example: If temperature in Las Vegas is less than 20 Celsius turn on the Led.
- Play 3D Game. The user can use the IoT MSK as a joystick and play a 3D Game online.
- Setup IFTTT scenarios what can be triggered by the IOT sensor data or button press.
- Use Amazon Alexa to control the IOT device Led.
Figure 14: Cloud setting

1. Go To cloud Settings
2. Enable Cloud
3. Create New Account (1st Time)
4. Enter Your email address and press send
5. Make sure IoT Apps are enabled

Figure 15: Applications: Historical Data

1. Go to email and click on the link to open the web app
2. Click ‘Historical Data Visualization’ on the side menu
3. From the Drop-Down menu, select your device (number on the underside of the IoT Sensor Kit), preferred Temperature scale and data range
4. Hit ‘Apply’ to view stored data
Upon successful connection to the IoT MSK application, you can navigate from the side menu to the following items:

- Environmental sensors
- IMU sensors
- Sensor Fusion 3D
- Cloud specific settings
- Configuration settings
- Information
- Disclaimer
- Magnetometer status

The IoT MSK advertises for 60 seconds (advertise timeout) before it goes to sleep. During this time the yellow LED will blink. The IoT MSK advertises for another 60 seconds when it detects movement and is paired again with the app. Error! Reference source not found. shows the application state machine.

Figure 16: IoT Sensors Reference Application State Machine

See Also: For Further reading

+ For more details about advanced software features, see Section 5: Development Kit Developer’s Guide UM-B-101.
+ For more details about the DA14585 advertising concept, see the Advertising Concepts tutorial.
9 Build Your First IoT Application

The user can build, program, and run a simple reference application on the IoT MSK. Make sure that you have all required tools installed as described in Section 7. The IoT MSK includes reference applications provided with preconfigured KEIL projects.

9.1.1 How to Start Development

After downloading the IoT MSK Software, the IoT Sensors Reference Application can be found in the target_apps directory.

1. Open the folder containing the IoT software files. This is the folder where you extracted the zip file DA14585_IOTP_v6.160.x.yy.zip
2. To open the project in Keil, in <IoT_MSK_root_directory>/projects/target_apps/iot/iot_585/Keil_5, double-click iot585.uvproj.
3. Refer to Figure 17: IoT Sensors Reference Application State Machine To build the KEIL project.

![Figure 17: IoT Sensors Reference Application State Machine](image)
Note

+ For further reading, a group of compilation switches control the application’s behavior. The most important switches are listed in Table 5: Configuration Parameters in Development Kit Developer’s Guide UM-B-101.
+ The application is placed/executed in RAM. For further reading more details about RAM management, see How to change the RAM size tutorial.
+ For programming into Flash, see the next section.

Warning

+ You need a KEIL μVision license because the code size of most of the IoT reference applications exceeds 32 Kbytes. (Other provided projects can be compiled using the free version of Keil). For further reading See Section 8: Memory Footprint of Development Kit Developer’s Guide UM-B-101.
+ The DA14585 IoT Sensors Reference Application can be compiled using the ARM GCC compiler. Dialog Semiconductor provides an example Eclipse project showing how to accomplish this. For further reading AN-B-064 describes the required steps to download and compile this project.

9.2 Flash Programming in MSK Applications

Before continuing, ensure that you have set up the hardware as shown in Figure 6.

This section describes the mkimage tool in detail. This is a tool to create an image to burn the SPI Flash (or any other non-volatile memory) according to the memory map already specified by the dual image bootloader. The mkimage tool is only needed to create the first full image when programming a single software application from the PC using a wired UART or SWD interface. In other cases, we can use SUOTA from a mobile phone to load any application (Eddystone UID-URL, for example) in external SPI Flash memory. For further reading refer to Tutorial 6.

The programmed devices come with the secondary bootloader already burned in the OTP memory. For further reading refer to the UM-B-012.

The SmartSnippets™ tool is used to program the bootloader in OTP and to program the product header and the dual images in SPI Flash. As stated in Section 7, we recommended installing the SmartSnippets™ tools to complete the software programming. This section provides more details and shows how to burn images in SPI Flash memory.

See Also: For Further reading

The secondary bootloader defines the memory map of the Flash consisting of two images and a program header, see Appendix A: Memory Map.

Note

The MSK reference application software implements the SUOTA receiver role. To support SUOTA, a dual image bootloader must be programmed in the OTP memory of the DA14585 and the corresponding non-volatile memory map must be applied in SPI Flash memory during the production phase.

These images are created by mkimage scripts or the mkimage application. Figure 18 shows the location under the IoT MSK SDK.
Figure 18: mkimage Scripts and Application Location

The available mkimage scripts are located (or should be placed) in:

`.../utilities/mkimage_utils_scripts` and are shown in Figure 19.

```
make_image_beacon.bat altbeacon_dynamic
make_image_iot.bat iot585
make_image_tag.bat smart_tag_585
make_all_images.bat
```

Figure 19: Available mkimage Scripts

Here after we will use the Smart Tag application as the compile example.

1. First you run the `make_image_tag.bat` script, you need to copy two files, in the same location as the mkimages scripts, as shown in Figure 20.
 - The generated `.hex` file by you keil project: `smart_tag_585.hex`
 - The SW Tag version `tag_sw_version.h` file found in:
 `projects/target_apps/tag/smart_tag/src/config`

```
make_image_tag.bat smart_tag_585
```

2. Then With SmartSnippets Studio, you can burn the generated `.bin` file (multi-image for tag application that we took as an example)
Note

- Erase: Erases the entire SPI Flash Memory
- Burn & Verify: Adds a verification step after the burn process. After burning data to SPI Flash memory, it is verified that the contents of the memory are the same with the contents of the file that has been burned.

Warning

When trying to burn the .bin at SPI Flash Memory, You are presented with the option to make it bootable. You MUST NOT select the bootable option, because special header is added before the data and the data is written starting at the selected offset. Please refer to Figure 21.
3- With the image is now burnt in flash and by pressing the Reset button on the CIB board, it will start working with the programmed application. Now you can see that the green LED blinks for Smart Tag Application. After 4 minutes the Smart Tag stops advertising and enters continuous Deep Sleep mode. To restart advertising, you should press Reset on the CIB board.

![Smart Tag Application](image)

Figure 22: Smart Tag Application

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The <code>make_image_tag.bat</code> is executed in 4 steps as shown in Figure 23 details is given in Appendix C: <code>mkimage</code> script steps.</td>
</tr>
</tbody>
</table>

![Flash Programming Procedure](image)

Figure 23: About Flash Programming Procedure
As shown in Figure 19, the mkimage tool has five different modes to create images.

- **single**: creates an .img file from the .bin file of the Keil project. This image contains the software version and the software version date.

- **multi**: creates a .bin file from the .bin file of the Keil project. This .bin file contains two images created by the mkimage single mode and a product header at the end of the file.

- **whole_img**: This mode is used to create a complete .bin file. This contains two alternative .img files, created by mkimage single mode, that are needed when using the SUOTA functionality, the config_struct.cfg file and the product header.

- **multi_no_suota**: This mode is used to create a whole .img file containing the .bin file of the Keil project preceded by the config_struct.cfg file. The image can be created for either an SPI Flash memory or an EEPROM Flash memory. The generated image will not include SUOTA functionality.

- **cfg**: This mode is used to create a .cfg file containing a device configuration struct preceded by its header. The device configuration struct header also contains a 4-byte CRC which is calculated from the fields of the configuration struct. The application also checks a software version file and includes the version in the header of the corresponding field.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The whole_img mode is only for beacons. It is similar to the multi mode with the addition of the beacon config struct.</td>
</tr>
</tbody>
</table>

9.3 Beacon Reference Applications

As shown in Figure 12, there are three different projects that demonstrate how connectable and non-connectable beacons can be used for various applications. These beacon examples use all the different beacon types and features supported by Dialog Semiconductor as shown in Table 6.

Table 6: Beacon Reference Applications

<table>
<thead>
<tr>
<th>Beacon Application</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>altbeacon_dynamic</td>
<td>Non-connectable</td>
</tr>
<tr>
<td>eddy uid_url_tlm</td>
<td>Connectable</td>
</tr>
<tr>
<td>ibeacon_suota_button</td>
<td>Non-connectable</td>
</tr>
</tbody>
</table>

This section gives an overview of the UID-URL Beacon reference application design.

Section 6 of Development Kit Developer’s Guide UM-B-101 describes what beacons are, what they can be used for, and how they are implemented within the BLE software stack of the DA14585 IoT MSK.

9.3.1 Building and Running the Example

To get started with Eddystone UID-URL example you need:

- The IoT MSK
- An Android/iOS mobile application. For an Android device you can use Locate Beacon.
After downloading the IoT MSK software, the Eddystone UID-URL Beacon Reference Application can be found in the target_apps directory.

1. Open the folder containing the IoT software files. This is the folder where you extracted the zip file.

2. To open the project in Keil, in

3. In `user_config.h`, enable the `USE_EDDYSTONE_URL` flag and disable the `USE_EDDYSTONE_UID` flag as shown in enable the `USE_EDDYSTONE_URL` flag.

```c
// Choose which Eddystone Mode to advertise
//#define USE_EDDYSTONE_UID
#define USE_EDDYSTONE_URL
```

The Eddystone UID-URL frame broadcasts a URL using a compressed encoding format. Once parsed and decompressed, the URL is directly usable by the client.

```c
// Default beacon configuration struct
struct user_beacon_config_tag user_default_beacon_config = {
    .uuid = { 0x58, 0x5C, 0xDE, 0x93, 0x1B, 0x01, 0x42, 0xCC, 0x9A, 0x13 },  //6-byte Namespace
    .major_ALT_val1 = 0x0300,  //Major Value
    .minor_ALT_val2 = 0x0200,  //Minor Value
    .company_id = DIALOG_COMP_ID,  //Beacon company ID
    .adv_int = BEACON_ADVERTISING_INTERVAL,  //Advertising interval
    .power = 0xC5,  //Tx Power
    .beacon_type = EDDYSTONE_UID,
    .url_prefix = HTTPWWW,
    .url = { 0x0E, 'd', 'i', 'a', 's', 'e', 'm', 'i', DOTCOM },
    .TLM_version = 0x00,
    .TLM_used = 0x01
};
```

Note

Note: The `.url` field of the Beacon Configuration Struct contains the URL, preceded by its length incremented by 7 (<url_string>+7) and followed by the URL postfix (.com). The URL prefix (HTTPWWW) is stored in the previous field of the struct `.url_prefix`.

4. Build (you need a KEIL μVision license), download, and execute your project. For the hardware settings, see Figure 6.

The advertising string contains a encoded URL with a length ranging from 1 to 17 bytes. The Eddystone UID-URL Beacon reference application advertises an EDDYSTONE-TLM advertising string every...
EDDYSTONE-URL advertisements and then returns to advertising Eddystone-URL strings. The Eddystone UID-TLM packet contains information about the battery voltage and the temperature of the device, as well as how long the device has been powered on and the amount of advertising events it has executed. When connected to a central, the device provides four different GATT services: DISS and BASS which are official BLE GATT services, and two Dialog proprietary GATT services, env_data_ntf and device_config. The device_config and env_data_ntf services are described in Section 7.10 and 7.11 in Development Kit Developer’s Guide UM-B-101.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default broadcasted link is www.diasemi.com which can be modified. The Eddystone protocol provides 17 bytes for the URL packet. If the URL is too long you can use a URL shortener.</td>
</tr>
</tbody>
</table>

The Locate Beacon application searches for available beacons and lists them:

![Figure 24: Locating the Beacon](image-url)
For Further reading:

- About google eddystone.
- About Eddystone-url.
10 Appendices

10.1 Appendix A: Memory Map

Figure 27: Analyzing a Flash Memory Image

10.2 Appendix B: Enclosure

Figure 28: DA14585 IoT MSK Enclosure: Bottom/Top View
10.3 Appendix C: mkimage script steps

The steps in the script are:

1. Convert your .hex to .bin.

![Figure 29: Convert .hex to .bin](image)

2. Create a single image from a binary.

![Figure 30: Create a Single Image from a Binary](image)

3. Create another single image from a binary.
4. Create a multi-image from the single two images.

Figure 31: Create Another Single Image from a Binary

```
smart_tag_585.bin + tag_sw_version1.h = smart_tag_1.img
```

This is the .bin file

This is the .h software version file

Run `mkimage` in Single mode to get one single .img

```
mkimage.exe single smart_tag_585.bin tag_sw_version1.h smart_tag_1.img
```

Figure 32: Create a Multi-Image from the Two Single Images

```
smart_tag_1.img + smart_tag_2.img = multi_smart_tag.bin
```

This is the first image

This is the second image

Run `mkimage` in MULTI mode to get one single .bin

```
0x0 and 0x18000 are the offsets of the two images. 0x38000 is the product header address.
```
11 Revision History

Table 7: Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>10-Dec-2018</td>
<td>Initial public release version.</td>
</tr>
<tr>
<td>1.1</td>
<td>15-Feb-2019</td>
<td>- Add new section: Run the pre-loaded Demo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Add IoT cloud setting Figure 14 and Figure 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Add new Appendix C: mkimage script steps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Text revision</td>
</tr>
</tbody>
</table>
Status Definitions

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAFT</td>
<td>The content of this document is under review and subject to formal approval, which may result in modifications or additions.</td>
</tr>
<tr>
<td>APPROVED or unmarked</td>
<td>The content of this document has been approved for publication.</td>
</tr>
</tbody>
</table>

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.

© 2019 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD
Phone: +44 1793 757700

Germany
Dialog Semiconductor GmbH
Phone: +49 7021 805-0

The Netherlands
Dialog Semiconductor B.V.
Phone: +31 73 640 8822
Email: enquiry@diasemi.com

United States
North America
Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan
Dialog Semiconductor K. K.
Phone: +81 3 5769 5100

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222
Web site: www.dialog-semiconductor.com

Hong Kong
Hong Kong
Dialog Semiconductor Hong Kong
Phone: +852 2607 4271

Korea
Dialog Semiconductor Korea
Phone: +82 2 3469 8200

China (Shenzhen)
Dialog Semiconductor China
Phone: +86 755 2981 3669

China (Shanghai)
Dialog Semiconductor China
Phone: +86 21 5424 9058

User Manual Revision 1.1 15-Feb-2019

CFR0012 34 of 34 © 2019 Dialog Semiconductor