Mobile Systems
Udo Kratz, SVP Mobile Systems
Forward Looking Statements

This document contains “forward-looking statements” that reflect management’s current views with respect to future events. The words “anticipate,” “believe,” “estimate,” “expect,” “intend,” “may,” “plan,” “project” and “should” and similar expressions identify forward-looking statements. Examples include statements regarding financial metrics, operational matters, and closing conditions and regulatory approvals required under the new contract with Apple. Forward-looking statements are subject to risks and uncertainties, including, but not limited to: an economic downturn in the semiconductor and telecommunications markets; changes in currency exchange rates and interest rates, the timing of customer orders and manufacturing lead times, insufficient, excess or obsolete inventory, the impact of competing products and their pricing, political risks in the countries in which we operate or sale and supply constraints. If any of these or other risks and uncertainties occur (some of which are described under the heading “Risks and their management” in Dialog Semiconductor’s most recent Annual Report) or if the assumptions underlying any of these statements prove incorrect, then actual results may be materially different from those expressed or implied by such statements. We do not intend or assume any obligation to update any forward-looking statement which speaks only as of the date on which it is made, however, any subsequent statement will supersede any previous statement.
Mobile Systems Market Opportunity

New Markets

PMIC & Chargers
- IoT
- Computing
 - Gaming
 - Storage
- Automotive

Haptics Market
- Computing
- Gaming

Mobile Systems SAM ($B)

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMICs and Charger ICs</td>
<td>$5.5B</td>
<td>$6.2B</td>
</tr>
<tr>
<td>Haptics</td>
<td>+3% CAGR</td>
<td></td>
</tr>
</tbody>
</table>

Source: 2018 Gartner & Dialog internal
Dialog is at the Forefront of PMIC Technology

- Investing in leading power-efficient technologies
- Integration of system functions including haptics & low-noise power management

New Product Development

- Highly integrated PMICs
- Ultra-high efficiency in-device chargers
- Nanopower power management
- Haptics

Focused Partnerships for Custom PMIC Platforms

- Diversifying application areas to accelerate revenue growth
- Demonstrated value proposition: performance, BoM cost, efficiency
Power Management Leadership

Understanding Technology Trends Before They Happen

2013 Announced the DA9210 scalable PMIC for multicore processors
 ▪ Industry leading 12A Multiphase architecture

2015 Introduced the DA9214 flagship PMIC
 ▪ 20A Multiphase

2017 World’s first 10A, 98% efficient inductor-less power converter DA9313

2017 World’s first wall-to-battery fast charging solution with adaptive direct charging DA9318

2018 Industry’s first Nanopower PMICs for IoT applications with dynamic voltage scaling DA9230 & DA9231
Ongoing Relationship with Apple

Relationship expanding into new product categories

PMIC

- Dialog to retain revenue and gross profit from all in-production products shipping to Apple
- Dialog to continue shipping current generation of main PMICs to Apple
- Dialog expects to continue shipping current and future generations of sub-PMICs for all platforms to Apple

Product Extensions

- Awarded a broad range of new contracts for the development and supply of power management, audio subsystem, charging and other mixed-signal integrated circuits
- Revenue from new contracts is expected to be realized starting in 2019 and accelerate in 2020
- Dialog expects growth from collaboration on future projects with Apple beyond announced contracts
- Targeting growth CAGR of 30%-35% across ongoing Apple business from 2018-2022
Tier One Customer Success

Focused Customer Partnerships

- Samsung Charger
- Toshiba PMIC
- Canon PMIC
- Oppo PMIC
- Bosch PMIC
- Fossil PMIC
Mobile Device Trends

Fast Charging
- Required with increasing smartphone usage and larger battery sizes

Increasing Battery Life for Always-On Applications
- Most important feature for consumer adoption

HD Haptics
- Enhancing user experience
PMIC Design Challenges

SoC Process Migration from 10nm to 7nm

- Lower voltages
- Higher currents
- Additional power outputs required for new functionality

PMIC Requirements

- High current, high density multiphase core regulators
- Low noise power supplies
- Integrated audio and/or haptics
A Broad Product Portfolio to Serve all Customer Power Needs

From Nanopower to High Performance Computing

- Ultimate Efficiency
- Best Power Density
- Super Converter
- Lowest Heat-up
- Less Inductors
- Less Capacitors
- Nanopower

- IoT PMU
- High Frequency Buck
- Core Regulator
- Battery Charger
- Bus Converter
- Automotive Regulator
- Current Doubler

Power:
- 1 µW
- 1W
- 10W
- 100W

Innovation Award 2017
Demand for Performance

- Average daily smart phone usage: 3hrs 20mins*
- Mobile processor performance: 10x in 7 years

Cost of Performance

- Battery capacity needs to increase with emerging smartphone usage & CPU performance
- 3000mAh - 4000mAh batteries typical but these larger batteries take hours to charge

Industry Response

- USB-C connector increase current 1.5A to 3.0A
- Adoption of fast charging technology

*Source: Kleiner Perkins

Battery Fast Charge Speed

Source: Tom’s Guide
iPhones tested with optional 29-watt adapter and USB-C to Lightning cable.
Fast Charging Application: Adaptive Direct Charging

High Performance Innovation

AC/DC adaptor outputs twice the battery voltage

DA9318L delivers double the adaptor current to the battery

Device temperature < 40°C at 6A charging current

2X

Travel Adaptor

Standard 3A USB cable & connector lowers system cost by 35%

12 2018 Capital Markets Day © 2018 Dialog Semiconductor
Fast Charging Application: Adaptive Direct Charging for Two-Cell Products

Industry Moving to Two-Cell Architecture

Benefit of Two-Cell Architecture

- Can charge a battery twice as fast for the same level of charging current
- Full charging in under one hour achieved by Dialog customers

Design Challenge

- All phone power circuitry designed for single Li-Ion battery

Dialog Solution

- High-efficiency switched capacitor, DA9313, converter enabling simple phone architecture change from single Li-Ion battery to two-cell
Custom PMIC Products: Game Consoles and Controllers

Application: Game Controller

Customer Design Challenge

- Required integration of multiple functions in a single PMIC
 - Battery charger
 - High number of DC-DC power outputs (>10)
 - Haptics driver

Dialog Value Proposition

- Smallest solution size
- Highest efficiency DC-DC buck regulators
- Low noise linear regulators

2017 Game Console Market Share

49MU Shipped with 2-3 Controllers per Console

- Sony Playstation 4: 42%
- Nintendo Switch: 25%
- Xbox One: 18%
- Ninteddo 3DS: 13%
- Others: 2%

Source: 2018 Gartner
Computing & Storage: Solid State Drive (SSD)

PMIC for flash and SSD Controller

Customer Design Challenge

- Fast transient response
- Lowest solution cost
- Short development cycle

Dialog Value Proposition

- High current DC-DC regulators exceed transient performance requirements while providing lowest BoM cost
- Global design teams provide close customer collaboration to meet required schedule

HDD and SSD Market Units (M)

Source: IDC December 2017
Customer Design Challenge

- Complex power sequencing requirements
- Need solution with flexibility for re-use
- Best in-class quality and reliability

Dialog Value Proposition

- Configurable architecture via digital interface
- Single integrated power solution for reuse in multiple platforms
- Strong automotive quality track record

Power Management SAM ($M)

Source: Databeans Q218, Bosch, Aptiv
Nanopower Power Management

Design Requirements

Maximize battery life
- Reduce frequency of charging for rechargeable systems

Reduce solution size
- Smaller form factors

Minimize product cost
Nanopower Power Management Application: Hybrid Smartwatch

DA9070: Configurable Nanopower PMIC

Customer Design Challenge

- Small solution size and external component height
- Need solution for rechargeable Li-Ion battery as previous generation used coin-cell battery

Dialog Value Proposition

- Complete integration of all power management functions including battery charger & fuel gauge
- Configurable power states extend battery life
- Seamless integration into platform including Dialog’s Bluetooth low energy SoC
Haptics

Market Developments

- Focus on user experience shifting towards high definition haptics
- Key feature for gaming and VR systems
- Android OS Oreo now opening up app developers to stream custom, real time haptic patterns
 - Smartphones use haptics like subwoofer
Haptics Application: Gaming

DA7280: High Definition Haptics

Customer Design Challenge
- Drive stronger and sharper haptic feedback
- Upgrade from “slow, spinning” rumbles to haptics that provide differentiated sensations based on in-game actions and environments

Dialog Value Proposition
- Wide bandwidth haptics driver enables crisp feedback for entire range of gaming experiences
- Extended battery life
 - Standby power is 80% lower than competition
 - Optimized drive signal provides the same haptic strength with only 25% of the power consumption
Key Takeaways

- Extending technology leadership into IoT, Gaming, Storage, Automotive and Charging markets
- Highly differentiated technologies defined by high power-efficiency
- A strengthened relationship with Apple
Powering the Smart Connected Future

www.dialogsemiconductor.com

Personal • Portable • Connected