Abstract

The DA1469x can boot from external serial devices to enable development of application code or to connect to an external (micro)controller. At power-up the system listens on the serial interface and tries to load the boot code from an external host. This document describes the booting sequence for the serial interfaces and provides developers with the necessary information for realizing the protocol required for establishing communication between an external device and the DA1469x.
Contents

Abstract ... 1

Contents ... 2

Figures ... 2

Tables ... 2

1 Terms and Definitions .. 3

2 References .. 3

3 Introduction ... 4

4 Booting .. 4
 4.1 Booting Sequence .. 4
 4.2 Interface ... 4

5 Retrieve Application Code ... 6
 5.1 Code Retrieval Sequence ... 6
 5.2 Code Retrieval Protocol .. 6

Revision History ... 8

Figures

Figure 1: Main Boot Flow Phases .. 5
Figure 2: Get Firmware from UART ... 7

Tables

Table 1: UART Legacy Protocol (<64 kB) ... 6
Table 2: UART Extended Protocol ... 6
DA1469x Booting from Serial Interfaces

1 Terms and Definitions

OTP One Time Programmable (memory)
SW Software
STX Start of Text (ASCII character)
SOH Start of Heading (ASCII character)
URX UART Receive port
UTX UART Transmit port

2 References

3 Introduction

The DA1469x can source code from two different locations. It can be either a serial port (UART) or an attached QPSI flash device. The DA1469x family can load from a serial interface with an image size of up to 128 kbytes.

This document covers the requirements for loading code through the serial port and starting to execute it.

4 Booting

4.1 Booting Sequence

The DA1469x booting sequence is described in Figure 1. In this document we will detail the procedure in the box “Get FW From UART” in the “Retrieve Application Code” section of the booting procedure.

4.2 Interface

The DA1469x boot on a unique UART serial interface. The UART configuration is the following:

- DA1469x Tx pin: P0_09
- DA1469x Rx pin: P0_08
- Baud rate: 115200 bps
- 8 bits data transmission LSB first
- 1 start bit
- 1 stop bit
- No parity
Figure 1: Main Boot Flow Phases
5 Retrieve Application Code

5.1 Code Retrieval Sequence

The procedure used by the ROM Booter to retrieve the firmware from the UART is described in Figure 2.

5.2 Code Retrieval Protocol

The Booter ROM code uses the protocol defined in Table 1. In the protocol the external host should wait to receive the STX byte and then initiate the programming sequence. The length is only two bytes. This limits the size of the bootable image to 64 kBytes.

<table>
<thead>
<tr>
<th>Table 1: UART Legacy Protocol (<64 kB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte #</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5...N</td>
</tr>
<tr>
<td>N+1</td>
</tr>
<tr>
<td>N+2</td>
</tr>
</tbody>
</table>

If the image is greater than 64 kBytes and less than 128 kBytes, the protocol described in Table 2 should be used.

<table>
<thead>
<tr>
<th>Table 2: UART Extended Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte #</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8...N</td>
</tr>
<tr>
<td>N+1</td>
</tr>
<tr>
<td>N+2</td>
</tr>
</tbody>
</table>
Figure 2: Get Firmware from UART
Rev R 1.0

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>14-Feb-2019</td>
<td>Initial version.</td>
</tr>
</tbody>
</table>
DA1469x Booting from Serial Interfaces

Status Definitions

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAFT</td>
<td>The content of this document is under review and subject to formal approval, which may result in modifications or additions.</td>
</tr>
<tr>
<td>APPROVED or unmarked</td>
<td>The content of this document has been approved for publication.</td>
</tr>
</tbody>
</table>

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.

© 2019 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD
Phone: +44 1793 757700

Germany
Dialog Semiconductor GmbH
Phone: +49 7021 805-0

The Netherlands
Dialog Semiconductor B.V.
Phone: +31 73 640 8822
Email: enquiry@diasemi.com

North America
Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan
Dialog Semiconductor K. K.
Phone: +81 3 5769 5100

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222

Web site: www.dialog-semiconductor.com

Hong Kong
Dialog Semiconductor Hong Kong
Phone: +852 2607 4271

Korea
Dialog Semiconductor Korea
Phone: +82 2 3469 8200

China (Shenzhen)
Dialog Semiconductor China
Phone: +86 755 2981 3669

China (Shanghai)
Dialog Semiconductor China
Phone: +86 21 5424 9058

Application Note Revision 1.0 14-Feb-2019

CFR0014 9 of 9 © 2019 Dialog Semiconductor