Abstract

The SmartSnippets™ toolbox is used to generate power profiling data and can be used by the developer to estimate the energy costs for his application. However, SmartSnippets may require some calibration to get more accurate results in power profiling, as sometimes the development kit hardware components can measure slightly differently for various reasons. Therefore it is recommended to tune SmartSnippets to the actual development kit that is used. This document steps through the process of calibration for Pro and Expert development kits.
SmartSnippets™ Power Profiler Calibration

Contents

Abstract... 1

Contents... 2

Figures.. 2

1 Terms and Definitions... 3

2 References... 3

3 Introduction... 4

4 PRO DevKit Calibration... 5
 4.1 Development Kit Preparation.. 5
 4.2 SmartSnippets Tool Preparation.. 6
 4.3 Calibration Process.. 7

5 EXPERT Kit Calibration.. 9
 5.1 Dev Kit Preparation... 9
 5.2 SmartSnippets Tool Preparation..10
 5.3 Calibration Steps...11

Revision History..13

Figures

Figure 1: DA14580 PRO Kit Motherboard Connections for Calibration.. 5
Figure 2: SmartSnippets Power Profiler Action Buttons ... 6
Figure 3: SmartSnippets Power Profiler Configuration Window ... 6
Figure 4: Power Profiler Initial Current Readings for PRO Kit... 7
Figure 5: PRO Kit Offset Current Calibration.. 7
Figure 6: PRO Kit Current Readings with SW3 Pressed... 7
Figure 7: PRO Kit Multiplication Factor Calibration.. 8
Figure 8: PRO Kit Current Readings after Calibration.. 8
Figure 9: DA14580 EXPERT Kit Motherboard Connections for Calibration.................................... 9
Figure 10: SmartSnippets Power Profiler Action Buttons ... 10
Figure 11: SmartSnippets Power Profiler Configuration Window ..10
Figure 12: Power Profiler Initial Current Readings for EXPERT Kit..11
Figure 13: EXPERT Kit Offset Current Calibration..11
Figure 14: EXPERT Kit Current Readings with SW3 Pressed...11
Figure 15: EXPERT Kit Multiplication Factor Calibration...12
Figure 16: EXPERT Kit Current Readings after Calibration...12
1 Terms and Definitions

Dev Kit | Development Kit
GND | Ground
DMM | Digital Multi-Meter

2 References

3 Introduction

The DA1458x development kits along with the SmartSnippets™ toolbox provide the developer with the energy consumption estimates for the application. To generate the power profile SmartSnippets uses offset currents and a multiplication factor. Sometimes this may not be accurate enough and needs calibration, which is specific for a given development kit. As the hardware components vary slightly in value and performance, each development kit behaves slightly differently. In order to compensate for these variations, the SmartSnippets tool has to be tuned for the DA14580 Pro and Expert development kits as described in the following sections.
4 PRO DevKit Calibration

The following calibration is performed on a DA14580DEVKT-P_VB and some of the steps may vary slightly depending on which version of the development board is used. The primary objective is to remove all unnecessary power consuming modules connected via jumpers to minimize the energy consumption as much as possible and keep it to something that can be estimated with known loads.

4.1 Development Kit Preparation

Follow the next steps to configure the development kit to have only the necessary jumpers connected to isolate the power profiling and keep the energy consumption to a calculated amount by minimizing the paths of consumption.

1. Remove all jumpers from the development kit except the following ones and make sure these jumpers are connected as specified.
 a. J1: Power measurement input (pins 1-2, 3-4)
 b. J10: Measurement trigger
 c. J11: Input power source (pins 1-2)
2. Remove the DA14580 daughter card.
3. Configure the DMM to measure DC current (DCI) mode and connect the DMM test leads to pin 7 and pin 23 of J5. This configuration resembles a fly-wire with DMM in the path.

This setup closes the circuit between the ground and supply voltage for the DA14580 via pushbutton SW3. This provides us with the current measurements later in the calibration process passing through a known load R58 that we can switch in on demand. Only 4 jumpers and a fly-wire (DMM leads) are connected on the PRO kit. This calibration does not need the coin cell battery.

Figure 1: DA14580 PRO Kit Motherboard Connections for Calibration
4.2 SmartSnippets Tool Preparation

Start SmartSnippets in UART/SPI mode, and open the power profiler. Go to the configuration dialog by pressing the Config button.

![Figure 2: SmartSnippets Power Profiler Action Buttons](image)

Make sure that the settings match with the highlighted entries of this screenshot and then click OK.

![Figure 3: SmartSnippets Power Profiler Configuration Window](image)
4.3 Calibration Process

1. Initialize and start the power profiler and let it run for a few seconds. Then press **Stop**. Copy the *Avg Current (mA)* value from the info bezel to the Windows clipboard.

 ![Power Profiler Initial Current Readings for PRO Kit](image)

 Figure 4: Power Profiler Initial Current Readings for PRO Kit

2. Reopen the configuration dialog and paste the average current into the *Calibration Offset (mA)* window. Change the sign to reflect a negative (-) value.

 ![PRO Kit Offset Current Calibration](image)

 Figure 5: PRO Kit Offset Current Calibration

3. Press **OK** to close the configuration dialog.

4. Press and keep holding the button SW3 on the PRO development kit. Start the power profiler and let it run for a few seconds. Stop the power profiler and read the average current. The average current should read between 9 mA and 13 mA.

 ![PRO Kit Current Readings with SW3 Pressed](image)

 Figure 6: PRO Kit Current Readings with SW3 Pressed

5. Record the *Avg Current (mA)* and *DMM Current (mA)* values while the switch SW3 is pressed. Then calculate the Multiplication Factor (MF) using the following equation:

 \[
 MF = 10 \times \left(\frac{\text{DMM Current (mA)}}{\text{Avg Current (mA)}} \right)
 \]

6. In this case the recorded current values are as follows:

 - SmartSnippets Avg Current = 11.5216 mA
 - DMM Current reading = 11.610 mA

7. Calculate the multiplication factor using the above recorded values:

 \[
 MF = 10 \times \left(\frac{11.610 \text{ mA}}{11.5216 \text{ mA}} \right) = 10.0767
 \]
8. This MF value must be placed in the *Multiplication Factor* field of the configuration dialog:

![Configuration Dialog](image)

Figure 7: PRO Kit Multiplication Factor Calibration

9. Run the power profiler with these settings and SW3 pressed. The *Avg current (mA)* value should be very close to the 11.610 mA value obtained by DMM readings.

![Info](image)

Figure 8: PRO Kit Current Readings after Calibration
5 **EXPERT Kit Calibration**

The following calibration is performed on a DA14580 Motherboard rev. C1 and some of the steps may vary slightly depending on which version of the development board is used. The primary objective is to remove all unnecessary power consuming modules connected via jumpers to minimize the energy consumption as much as possible and keep it to something that can be estimated with known loads.

5.1 **Dev Kit Preparation**

Follow the next steps to configure the development kit to have only the necessary jumpers connected to isolate the power profiling and keep the energy consumption to a calculated amount by minimizing the paths of consumption.

1. Remove all the jumpers from the board except the following and make sure these jumpers are connected in the specified way.
 b. J7: Power measurement input (1-2, 3-4).

2. Remove the DA14580 daughter card.

3. Configure a DMM in DC current (DCI) mode and connect the test leads to pin-5 of J16 (switch K2) and pin-2 of J14 (input voltage).

The jumper J23 sets the input supply voltage to ~3 V, effectively operating in Buck mode. The Expert kit is also capable of operating in Boost mode where the input supply voltage is 1.5 V (not required for calibration).

The DMM test leads connect the pushbutton K2 to the input supply voltage of the DA14580. This allows us to use the 1 kΩ resistor from the pushbutton K2 to GND as a known load that we can switch in on demand.

Only five jumpers and the DMM test leads are connected to the Expert kit. The battery is not needed for this calibration.

![Figure 9: DA14580 EXPERT Kit Motherboard Connections for Calibration](image_url)
5.2 SmartSnippets Tool Preparation

Start SmartSnippets in UART/SPI mode, and open the power profiler. Go to the configuration dialog by pressing the **Config** button.

![SmartSnippets Power Profiler Action Buttons](image)

Figure 10: SmartSnippets Power Profiler Action Buttons

Make sure that the settings match with the highlighted entries of this screenshot and then click **OK**.

![SmartSnippets Power Profiler Configuration Window](image)

Figure 11: SmartSnippets Power Profiler Configuration Window
5.3 Calibration Steps

1. Initialize and start the power profiler and let it run for a few seconds. Then press **Stop**. Copy the **Avg Current (mA)** value from the info bezel to the Windows clipboard.

![Figure 12: Power Profiler Initial Current Readings for EXPERT Kit](image)

2. Reopen the configuration dialog and paste the average current into the **Calibration Offset (mA)** window. Change the sign to reflect a negative (-) value.

![Figure 13: EXPERT Kit Offset Current Calibration](image)

3. Press **OK** to close the configuration dialog.
4. Press and keep holding the button K2 on the EXPERT development kit. Start the power profiler and let it run for a few seconds. Stop the power profiler and read the average current.

![Figure 14: EXPERT Kit Current Readings with SW3 Pressed](image)

5. Record this **Avg Current (mA)** and **DMM Current (mA)** while the switch K2 is pressed, since we need it to calculate the Multiplication Factor (MF) using the following equation.

\[MF = 10 \times \left(\frac{\text{DMM Current (mA)}}{\text{Avg Current (mA)}} \right) \]

6. In this case the recorded current values are as follows:

 - SmartSnippets Avg Current = 2.9249 mA
 - DMM Current reading = 2.953 mA

7. Calculate the multiplication factor using the above recorded values:

\[MF = 10 \times \left(\frac{2.953 \text{ mA}}{2.9249 \text{ mA}} \right) = 10.0961 \]
8. This MF value must be placed in the Multiplication Factor field of the configuration dialog:

![Configuration Dialog](image)

Figure 15: EXPERT Kit Multiplication Factor Calibration

9. Run the power profiler with these settings and SW3 pressed. The Avg current (mA) should be very close to the 2.953 mA value obtained by DMM readings.

![Current Readings](image)

Figure 16: EXPERT Kit Current Readings after Calibration
SmartSnippets™ Power Profiler Calibration

Status Definitions

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAFT</td>
<td>The content of this document is under review and subject to formal approval, which may result in modifications or additions.</td>
</tr>
<tr>
<td>APPROVED or unmarked</td>
<td>The content of this document has been approved for publication.</td>
</tr>
</tbody>
</table>

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.

© 2017 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD
Phone: +44 1793 757700

Germany
Dialog Semiconductor GmbH
Phone: +49 7021 805-0

The Netherlands
Dialog Semiconductor B.V.
Phone: +31 73 640 8822

Email: enquiry@diaspectri.com
Web site: www.dialog-semiconductor.com

North America
Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan
Dialog Semiconductor K. K.
Phone: +81 3 5425 4567

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222

North America
Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan
Dialog Semiconductor K. K.
Phone: +81 3 5425 4567

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222

North America
Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan
Dialog Semiconductor K. K.
Phone: +81 3 5425 4567

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222