

User Manual

DA16200 DA16600 Security Tool

UM-WI-015

Abstract

This User Manual provides instructions on how to implement and use the Security Tool of DA16200
DA16600.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 2 of 42 © 2021 Dialog Semiconductor

Contents

Abstract .. 1

Contents ... 2

Figures .. 3

Tables ... 3

Terms and Definitions ... 4

References ... 4

1 DA16200 Security .. 5

1.1 Security Engine ... 5

1.2 H/W Components .. 5

1.3 S/W Architecture ... 6

2 Security Features .. 7

2.1 Security Services .. 7

2.1.1 Secure Boot ... 7

2.1.2 Secure Debug .. 7

2.1.3 Secure Asset ... 7

2.2 Secret Keys ... 7

2.2.1 HUK (Device Key) .. 7

2.2.2 Platform Key (Krtl) ... 7

2.2.3 Chip Master (CM) Keys ... 8

2.2.4 Device Master (DM) Key.. 8

2.3 RoT .. 8

2.4 OTP Memory ... 9

2.5 Life Cycle States (LCS) ... 11

2.5.1 CM LCS ... 11

2.5.2 DM LCS ... 12

2.5.3 Secure LCS ... 12

2.5.4 RMA LCS ... 12

2.6 Boot Services .. 13

2.6.1 Secure Boot ... 13

2.6.2 Secure Boot Flow .. 14

2.6.3 Secure Debug .. 18

2.7 Device Provisioning ... 19

2.8 Secure Asset ... 20

2.8.1 API for Secure Assets .. 20

2.8.2 Secure Storage .. 22

2.8.3 Secure NVRAM ... 26

3 Security Tool .. 28

3.1 Role Selection ... 29

3.2 Secure Production ... 31

3.3 Key Renewal ... 35

3.4 Secure Boot .. 36

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 3 of 42 © 2021 Dialog Semiconductor

3.5 Secure Debug ... 37

3.6 Secure RMA .. 38

3.7 Remove Secrets .. 39

Revision History .. 41

Figures

Figure 1: Block Diagram of DA16200 Security Engine ... 5
Figure 2: DA16200 Security SW Architecture ... 6
Figure 3: Life Cycle States (LCS) Transitions ... 11
Figure 4: General Structure of a Certification .. 13
Figure 5: The 3-Certificates Chain .. 14
Figure 6: Secure Boot Flow ... 14
Figure 7: Overall Certificate-Verification Process.. 15
Figure 8: Certification Contents in SW Images ... 16
Figure 9: Certification Contents in DA16200 ... 17
Figure 10: Three-Level SD Certificate Scheme... 18
Figure 11: The Encryption Process of Secure Asset .. 21
Figure 12: Top Window of the Security Tool ... 28
Figure 13: Secure Boot and Secure Debug Menus .. 29
Figure 14: Request the Soc-ID in Secure Debug .. 30
Figure 15: Prevent Accidental Removal of Secret Keys in Secure Production 32
Figure 16: Warning to Prevent Accidental Removal Secret Keys in Key Renewal 35
Figure 17: Debug Certificate of Secure Debug Menu ... 36
Figure 18: Window to Enter SoC ID in Secure Debug .. 37
Figure 19: Window to Enter SoC ID in RMA ... 38
Figure 20: Warning to Prevent Unwanted Removal of Secret Keys in Secure RMA 40
Figure 21: Remove Secret Keys in Secure RMA .. 40

Tables

Table 1: Configuration Data & Key in OTP Memory ... 9
Table 2: CM-Programmed Flags ... 9
Table 3: DM-Programmed Flags ... 10
Table 4: Items in the Enabler Certificate ... 18
Table 5: Items in the Developer Certificate ... 19
Table 6: CM Keys and Assets in CM LCS ... 19
Table 7: DM Keys and Assets in DM LCS ... 19
Table 8: Secure Asset Runtime APIs .. 20
Table 9: Secure Asset Decryption Process ... 21
Table 10: Secure Asset Runtime APIs .. 22
Table 11: Encryption Process.. 24
Table 12: Decryption Process ... 25
Table 13: HW Acceleration Crypto Algorithms .. 26
Table 14: The Secret Keys for Secure Production .. 31
Table 15: CMPU/DMPU download address in Sflash ... 32
Table 16: UEboot Binary Definition of Secure Boot, None Secure Boot and RMA............................. 32
Table 17: UEboot Binary Setting for Secure Boot, None Secure Boot and RMA 33
Table 18: The Success Message to Change from DM to Secure LCS ... 34
Table 19: The Directory Definition for Secure Production ... 34
Table 20: The Directory Definition for Key Renewal ... 35
Table 21: Directory Definition for Secure Debug ... 37
Table 22: The directory Definition for Secure RMA ... 39
Table 23: Directory Definition to Remove Secret Keys in Secure RMA .. 40

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 4 of 42 © 2021 Dialog Semiconductor

Terms and Definitions

CM Chip Master

DCU Debug Control Unit

DM Device Master

CMPU Chip Master Process Unit

DMPU Device Master Process Unit

OEM Original Equipment Manufacturer

RoT Root of Trust

SB Secure Boot

SD Secure Debug

References

[1] DA16200, Datasheet, Dialog Semiconductor

[2] UM-WI-002, DA16200 DA16600 ThreadX SDK Programmer Guide, Dialog Semiconductor

[3] UM-WI-023, DA16200 EVK User Manual, Dialog Semiconductor

[4] UM-WI-003, DA16200 DA16600 AT Command User Manual, Dialog Semiconductor

[5] UM-WI-046, DA16200 DA16600 FreeRTOS SDK Programmer Guide, Dialog Semiconductor

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 5 of 42 © 2021 Dialog Semiconductor

1 DA16200 Security

1.1 Security Engine

DA16200 uses the ARM CryptoCell-312 as its security engine that provides security services for the
platform such as Secure Boot and Key Management with acceleration for cryptographic operations.
Many of the security services are implemented in the ROM code such as the Secure Boot process.
The cryptography and management service are integrated into the OS (Operating System) and are
used with mbedTLS for the TLS and SSL protocols.

1.2 H/W Components

Figure 1 shows a block diagram of the DA16200 security engine.

TRNG RAM

PKA RAM
ARM Cryptocell-312

AHB2APB

AO Model

AHB2APB
Env.

Registers

APB4 slave
interface

APB4 slave
(code) interface

AHB Bus Matrix

M

SSS

AHB Slave Mux

Persistent State

Cold
Reset

Warm
Reset

APB2OTP OTP Memory

DA16200
Security Engine

Figure 1: Block Diagram of DA16200 Security Engine

The host processor is able to access CC312’s SRAM and registers, as well as the OTP (One Time
Programmable) memory in DA16200. The CC312 security engine can initialize transactions with the
system memory or other DMA slaves through the AHB (AMBA High-performance Bus) Master
(Marked by 'M' in Figure 1).

The CC312 security engine is connected to the external OTP memory via the APB4 (Advanced
Peripheral Bus) Master interface, and OTP memory holds the device root key (HUK), lifecycle state
(LCS), et cetera as described further on in this section. The specific area of OTP memory that is

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 6 of 42 © 2021 Dialog Semiconductor

controlled by the CC312 security engine is only accessible by the CC312 and thus acts as the Root-
of-Trust for the DA16200.

The AO (Always On) module must survive a power down of the CC312 to keep the critical state of
the embedded system. The AO (Always On) module includes the following components:

● Security Lifecycle States (LCS)

● DCU (Debug Control Unit) and DCU Lock registers

● Lock-Bits Register

1.3 S/W Architecture

Secure Boot services run from the ROM in DA16200. The crypto services, which are accelerated by
CC312 HW, can be used with mbedTLS APIs. See the DA16200 DA16600 SDK Programmer User
Manual [2] for the mbedTLS APIs. Figure 2 shows the security software architecture in DA16200.

Certificate
Creation

Provisioning

Boot Services

Management API AES Driver

Certificate
processing
and image
verification

Reduced-function
SHA and PKA

drivers

Embedded Cryptographic APIs

mbedTLS APIs

RNG API
Symmetric

Cryptographic API
Asymmetric

Cryptographic API

Provisioning API

PKA Driver
Register Engine

Driver
TRNG Driver

RTOS

ARM CryptoCell-312 Hardware

Figure 2: DA16200 Security SW Architecture

DA16200 DA16600 supports a ThreadX based SDK and a FreeRTOS based SDK. See the DA16200
DA16600 FreeRTOS SDK Programmer Guide [5] for Serial Flash Memory Map of FreeRTOS
images.

● Images in ThreadX SDK

○ UEboot image (XXUEBOOTXX.img) built from SDK contains a bootloader (UEboot) binary

○ RTOS image (XXRTOSXX.img) built from SDK contains an RTOS binary

○ SLIB image (XXSLIBXX.img) built from SDK contains a ram library and TIM binary

● Images in FreeRTOS SDK

○ UEboot image (XXUEBOOTXX.img) built from SDK contains a bootloader (UEboot) binary

○ RTOS image (XXRTOSXX.img) built from SDK contains an RTOS and SLIB binaries.

The RTOS image of the FreeRTOS SDK combines the RTOS and SLIB images which are
separate images in the ThreadX SDK.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 7 of 42 © 2021 Dialog Semiconductor

2 Security Features

2.1 Security Services

2.1.1 Secure Boot

The DA16200 provides a secure boot function that allows trusted images signed with a key matching
the registration information in the system during the boot process to ensure the system’s platform
integrity. In the production step of the product it is necessary to register the key information for
authentication in the OTP memory, which is protected by CC312.

2.1.2 Secure Debug

DA16200 supports a Secure Debug function that provides hardware protection of the debug port to
prevent an external security attack. When a developer needs to enable this port for system
debugging, Secure Debug uses the authenticated key with the signed debug certificate to remove the
hardware protection, to allow debugging tasks.

2.1.3 Secure Asset

Secure Asset is a cryptographic service provided to protect data stored in external storage (Serial
Flash memory). Data can be encrypted or decrypted with the provisioning key stored in the chip.
Production-Line Provisioning is used to protect the data used in the mass production process, and
Asset Provisioning is used to protect the data used during system operation.

2.2 Secret Keys

For the security feature in DA16200, several security keys are required and should be stored in OTP
memory before production. This chapter describes the required security keys in DA16200. All secret
keys are burned with the Security Tool. All hardware keys are accessed only by CryptoCell-312 and
cannot be read by the CPU depending on the security life cycle state (LCS).

2.2.1 HUK (Device Key)

HUK (Hardware Unique Key) is a secret value that is burned into OTP memory, and is read by HW
as part of the secure boot sequence and is no longer accessible for reading. HUK can only be used
by the AES engine, and only for the derivation of other keys. It must be unique per device. For this
uniqueness, it is generated as the seed value derived from TRNG in CC312. The SoC ID is derived
from this key. A SoC ID is required in Secure Debug, which will be described further on. A SoC ID is
only valid in the Secure LCS state. HUK will be generated by the Security Tool.

2.2.2 Platform Key (Krtl)

The Platform key (Krtl) is placed in DA16200 and used for provisioning during the production lifecycle
(CM and DM LCS). The Platform key (Krtl) will be provided by Dialog Semiconductor when
requested. It is a 128-bit AES class key and a random 128-bit value. A key derived from this key is
used to encrypt the provisioning assets such as Chip Master keys and Device Master keys, which
are described in the following section. This key is only for use in CM (Chip Master) and DM (Device
Master) LCS and is locked by HW in all other LCS. Krtl should not be exposed to others for any
reason. Our Security Tool uses this key in Secure Production and will remove the key after use.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 8 of 42 © 2021 Dialog Semiconductor

2.2.3 Chip Master (CM) Keys

CM keys are burned in OTP memory at production time and used as a back-up key for DM keys. The
CM keys are generated in the Security Tool. There are two types of CM keys:

● CM Provisioning Key (Kpicv): The Kpicv is a 128-bit AES key used for an asset provisioning flow

● CM Encryption Key (Kceicv): The Kceicv is a 128-bit AES key used to encrypt or decrypt
software images as part of the Secure Boot process. One of the images for the DA16200, the
SLIB (System Library) image in the ThreadX SDK, can be encrypted with this key

2.2.4 Device Master (DM) Key

DM keys are burned in OTP memory at production time. They are generated in the Security Tool.
There are two types of DM keys:

● DM Provisioning Key (Kcp): This is a 128-bit AES key that is used for asset provisioning

● DM Encryption Key (Kce): This 128-bit AES key is used to encrypt or decrypt SW images as part
of the Secure Boot process. One of the images for the DA16200, the SLIB image in the ThreadX
SDK, can be encrypted with this key

2.3 RoT

The Root-of-Trust (RoT) is a hash of the public key. Every public key has a corresponding private
key that must be preserved and not exposed for security reasons. These public and private key pairs
are generated in the Security Tool.

There are two RoT keys: Hbk0 and Hbk1. Hbk0 is a hash of the CM public key generated by the
Security Tool and is a back-up RoT for Hbk1 (a hash of the DM public key), which is normally used
for Secure Boot and Secure Debug. Both Hbk0 and Hbk1 should be burned to the OTP memory as
RoT. Hbk0 and Hbk1 are used in order to validate the authentication of an image with certificate
data.

Below is a summary for Hbk0 and Hbk1:

● Hbk0

A 128-bit truncated SHA-256 digest of a CM public key. Used as a back-up key for Hbk1, mainly
used for Secure Boot and Secure Debug

● Hbk1

A 128-bit truncated SHA-256 digest of a DM public key. Used as a main RoT key

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 9 of 42 © 2021 Dialog Semiconductor

2.4 OTP Memory

OTP memory is used to store keys and configuration data. DA16200 has 2 KB of OTP memory.
Mandatory configuration data must be burned at the offsets given in Table 1.

Table 1: Configuration Data & Key in OTP Memory

32-bit word Description Read Write

0x00-0x07 HUK Readable in CM LCS Writable in CM or RMA LCS

0x0B Kpicv Readable in CM LCS Writable in CM or RMA LCS

0x0C-0x0F Kceicv Readable in CM LCS Writable in CM or RMA LCS

0x10 CM programmed flags. See the following table Writable in CM or RMA LCS

0x11-0x18 RoT pubkey

If split into CM and DM keys:

CM key(Hbk0): 0x11-0x14

DM key(Hbk1): 0x15-0x18

Readable in all LCS Writable in CM or DM LCS

0x19-0x1C Kcp Readable in CM LCS or

DM LCS
Writable in DM or RMA LCS

0x1D-0x20 Kce Readable in CM or DM

LCS
Writable in DM or RMA LCS

0x21 DM programmed flags See the following table Writable in all LCS

0x27 General purpose configuration

flags
 Writable in CM LCS

0x28-0x2B DCU 128bits lock mask that

allows S/W to lock the required

debug bits

Readable in all LCS Writable in CM or DM LCS

0x2C-0x7FF Code and data sections that a

user may use
Readable in all LCS

Note 1 The word area from 0x00 ~ 0x2B is not accessible by the CPU and is accessible only by the HW
Security engine in DA16200.

The word area from 0x00 ~ 0x2B should be burned into OTP memory at production time. For this
purpose, special binary images called CMPU and DMPU are required. CMPU is a binary image
containing the HUK, Hbk0 and CM keys. DMPU is a binary image containing the Hbk1 and DM keys.
The CMPU and DMPU binary images are generated by the Security Tool during the Secure
Production process. This is described in the Security Tool chapter (3) in this document.

The following table shows the CM programmed flags that are located at address 0x10 in the OTP
memory.

Table 2: CM-Programmed Flags

Bits Usage Read Access Write Access

[7:0] Number of zero bits in HUK. Readable only in CM LCS;
masked for reading in any
other LCS

Writeable in CM LCS
and RMA LCS.

[14:8] Number of zero bits in Kpicv
(128-bit).

Readable only in CM LCS. Writeable in CM LCS
and RMA LCS.

[15] Kpicv "not in use" bit. If Kpicv
is not in use, this bit
is set by the IFT.

Readable in all security life-
cycle states.

Writeable in CM LCS
and RMA LCS.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 10 of 42 © 2021 Dialog Semiconductor

[22:16] Number of zero bits in
Kceicv.

Readable only in CM LCS. Writeable in CM LCS
and RMA LCS.

[23] Kceicv "not in use" bit. If
Kceicv is not in use, this
bit should be set by the IFT.

Readable in all security life-
cycle states.

Writeable in CM LCS
and RMA LCS.

[30:24] Number of zero bits in Hbk0 Readable in all security life-
cycle states.

Writeable in CM LCS
and RMA LCS.

[31] Hbk0 "not in use" bit. If Hbk0
is not in use, this bit
should be set by the IFT.

Readable in all security life-
cycle states.

Writeable in CM LCS
and RMA LCS.

The following table shows the DM programmed flags that are located at address 0x21 in OTP
memory.

Table 3: DM-Programmed Flags

Bits Usage Read Access Write Access

[7:0] Number of zero bits in Hbk1
or Hbk.

Readable in all security life-
cycle states.

Writeable in DM LCS
and RMA LCS.

[14:8] Number of zero bits in Kcp
(128-bit).

Readable only in CM LCS
and DM LCS.

Writeable in DM LCS
and RMA LCS.

[15] Kcp "not in use" bit. If Kcp is
not in use, this bit should be
set by the OFT.

Readable in all security life-
cycle states.

Writeable in DM LCS
and RMA LCS.

[22:16] Number of zero bits in Kce. Readable only in CM LCS
and DM LCS.

Writeable in DM LCS
and RMA LCS.

[23:23] Kce "not in use" bit. If Kce is
not in use, this bit should be
set by the OFT.

Readable in all security life-
cycle states.

Writeable in DM LCS
and RMA LCS.

[29:24] Reserved. Always readable. Always writeable.

[30] DM RMA LCS flag. Readable in all security life-
cycle states.

Writeable in CM LCS,
DM LCS and
Secure LCS.

[31] CM RMA LCS flag. Readable in all security life-
cycle states.

Writeable in CM LCS,
DM LCS and
Secure LCS, only if
the CM RMA
locking bit in the AO
module is not set.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 11 of 42 © 2021 Dialog Semiconductor

2.5 Life Cycle States (LCS)

There is a mechanism for managing the security Life Cycle States of the DA16200. This mechanism
enables the device to behave differently in each life cycle state, protecting any security assets once
they have been introduced into the device and reducing the risk of IP theft and reverse engineering.

Figure 3 shows the LCS transitions:
R

et
u

rn
 M

e
rc

h
an

d
is

e
A

ut
h

o
ri

za
ti

o
n

 (
R

M
A

)

Chip Master State (CM)

Device Master State (DM)

Deployed (Secure)

Trusted Environment

Untrusted Environment

Figure 3: Life Cycle States (LCS) Transitions

2.5.1 CM LCS

The device is in CM LCS if the following is true:

● CM-programmed flags: OTP word 0x10 = 0

● DM-programmed flags: OTP word 0x21 = 0

So, the default HW state is CM LCS. In this LCS, all debug interfaces (UART and JTAG) are
enabled.

A CMPU package binary image that is generated with the Security Tool includes the following assets
and should be burned into OTP in CM LCS:

● HUK: OTP word 0x00-0x07

● The number of zero bits in HUK: Bits[7:0] of OTP word 0x10

● Hbk0: OTP word 0x11-0x14

● The number of zero bits in Hbk0: Bits[30:24] of OTP word 0x10

● GPPC (General purpose configuration) flags, OTP word 0x27

● CM DCU locking if Hbk0 is used

Once these assets are burned, the device does a POR (Power On Reset) to transition to DM LCS.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 12 of 42 © 2021 Dialog Semiconductor

2.5.2 DM LCS

The device is in DM LCS if the following is true:

● CM-programmed flags: OTP word 0x10 ≠ 0

● DM programmed flags: Bits[7:0] of OTP word 0x21 = 0

In this LCS, all debug interfaces (UART and JTAG) are still enabled.

A DMPU package binary image that is generated with Security Tool includes the following assets and
it should be burned into OTP in DM LCS:

● Hbk1: OTP word 0x15-0x18

● The number of zero bits in Hbk1: Bits[7:0] of OTP word 0x21

● Optional: DM DCU locking if Hbk1 is used

Once these assets are burned, the device does a PoR to transition to Secure LCS

2.5.3 Secure LCS

The Deployed (Secure) LCS is used for devices out of the manufacturing line and in the field.

It permits the execution of security functions but blocks all debugging and testing capabilities.

Use of Secure Boot is mandatory in this LCS. The device is in Secure LCS if the following is true:

● CM programmed flags: OTP word 0x10 ≠ 0

● DM programmed flags: Bits[7:0] of OTP word 0x21 ≠ 0

Secure LCS is the state changed with the DMPU process that is described in Section 3.2. This is the
state that should be applied at mass production when secure boot is required. Once in this state, the
debug interface such as JTAG cannot be used anymore for security reasons. To enable the disabled
debug interface, a firmware image with a Debug certificate must be used as described in Section 3.5.

2.5.4 RMA LCS

The Return Merchandise Authorization (RMA) LCS is a terminal state for devices that are returned to
a Chip maker (i.e. Dialog Semiconductor) for analysis of fatal failures. When a device is put into RMA
LCS, it loses its existing secret keys, but regains full access to all debugging and testing capabilities.
All cryptographic engines are usable for test purposes, but the root keys change for each boot phase.

● HUK is replaced with a different random value with each boot cycle. Therefore, any previously-
saved data that is protected by a key derived from HUK is lost

● Kce and Kceicv are invalidated so that Secure Boot can be used only in non-encrypted mode

● Kcp and Kpicv are invalidated, so that provisioning can no longer be done based on the previous
values

There are two separate certificates needed to enter a device into RMA LCS - CM RMA and DM
RMA. CM RMA is a certificate image with CM RoT (Hbk0) chain and will remove CM keys in OTP.

DM RMA is a certificate image with DM RoT (Hbk1) chain and will remove DM keys.
Detailed process is described in Section 3.6.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 13 of 42 © 2021 Dialog Semiconductor

2.6 Boot Services

The boot services in DA16200 include the Secure Boot and Secure Debug certificate-based
mechanisms that use an RSA private-public key scheme. Secure Boot and Secure Debug is based
on the following elements:

● OTP secrets

Provisioned to the device during the device manufacturing stage (CM LCS or DM LCS).

● ROM code

A code library linked into the ROM of the device.

● RSA scheme verification

Secure Boot and Secure Debug verification is done over a certificate chain that is two or three
certificates long. Each certificate is signed and verified with an RSA PSS scheme (RSA 3072 Private-
Public Key scheme and compliant to PKCS#1 Ver. 2.1, RSA-PSS).

2.6.1 Secure Boot

Secure Boot guarantees that only authenticated, and optionally encrypted, software images are
loaded on a target system. A certificate is a message used to prove ownership of a public key. The
certificate contains information about the public key, the authentication hash of the next key, and the
signature that verifies contents.

The general structure of a certificate is as show in Figure 4.

Header

Certificate data
(Includes Public Key)

Signature

Figure 4: General Structure of a Certification

A signature is generated by encrypting a hash of the Certificate Data using a private key. Signature
verification is done using a public key to decrypt a hash of the same Certificate Data. If the Certificate
Data is compromised for any reason, then the decrypted hash of the Certificate Data would be
different from the original signature and certificate verification fails.

DA16200 uses a Certificate Chain for secure certificate verification.

A 3-level “self-signed” certificates chain is used, which are a series of certificates that contain the
public keys and are signed with a corresponding private key.

The Secure Boot certificate chain is composed of key certificates and content certificates.

● Key certificates

Mainly the 1st or 2nd certificate in the certificates chain.

● Content certificates

The last certificate in a certificates chain, which is used to load and validate software components.

Figure 5 shows a 3-certificates chain.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 14 of 42 © 2021 Dialog Semiconductor

Header

Certificate data:
PubKey A

Hash of PubKeyB

Signature
(PrivKeyA)

Key Certificate

Header

Certificate data:
PubKey B

Hash of PubKeyC

Signature
(PrivKeyB)

Key Certificate

Header

Certificate data:
PubKey C

Hash of Images

Signature
(PrivKeyC)

Content
Certificate

Figure 5: The 3-Certificates Chain

● Three-level SB certificate scheme

The three-level SB certificate chain order is: master key certificate → key certificate → content
certificate.

Even if a key used in a 3rd or 2nd certificate is leaked, it can be replaced with another key if the
private key used in the first certificate is not compromised.

2.6.2 Secure Boot Flow

To verify a certificate, the following steps are done in DA16200:

● Get the public key from the certificate and calculate its hash (HBK1, or HBK0)

● Verify the calculated hash:

○ If it is the first certificate in the chain, compare it with the hash value stored in the OTP

○ Otherwise, compare it with the saved hash from the previous certificate in the chain

● Verify the RSA signature with the public key of the certificate

● Save the public key hash of the next certificate, unless it is the last certificate in the chain

Hash of
PubKeyA

Header

Certificate data:
PubKey B

Hash of PubKeyC

Signature
(PrivKeyB)

Key Certificate

Header

Certificate data:
PubKey C

Hash of Images

Signature
(PrivKeyC)

Content
Certificate

OTP Memory
Header

Certificate data:
PubKey A

Hash of PubKeyB

Signature
(PrivKeyA)

Key Certificate

Figure 6: Secure Boot Flow

The entire certificates chain mentioned above is included in the built Image of DA16200. And it is
impossible for an unauthorized image to boot because of the above verification process with this
certificates chain.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 15 of 42 © 2021 Dialog Semiconductor

Figure 7 shows the overall certificate-verification process.

Process certificate

Is it the first
certificate ?

Calculate Hbk and compare it to
the saved hash of the public key

No
Calculate Hbk and compare it to
the value stored in OTP memory

Yes

Are they equal ? Verify the RSA signatureYes

Verification
Passed ?

Is it the first
certificate ?

Yes

Compare the SW version in the
certificate with the one stored in

OTP memory

Compare the SW version in
the certificate with the one

stored the previous certificate
YesNo

Is it equal or
bigger ?

Continue with certificate processYes

Exit with error

No

No

No

Figure 7: Overall Certificate-Verification Process

Figure 8 shows the content-certificate process is done in a loop to process every SW image that is
signed in the certificate.

The content certificate contains the following information for every image that must be verified:

● The address that the SW image is loaded to [load address]

● The flash address that the SW image is stored in [storage address]

● The size of the SW image

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 16 of 42 © 2021 Dialog Semiconductor

Get the hash of the SW
image form the certificate

Verify the hash
of the image ?

Load the image
to memory

Yes

Load SW image
to memory

Temporarily load
SW image to RAM

NoYes

Calculate hash

Compare the calculated hash to
the certificate hash

Are the hashes
the same ?

Exit

Exit with error

No

LCS = Secure ? No

Load SW image
to memory

No

Yes

Yes

Figure 8: Certification Contents in SW Images

Figure 9 shows the structure of the built image of the DA16200. For secure boot the certificate chain
scheme is described above, and the key and content certificate chain are included in the image of
the DA16200.

Besides certificates, the following contents are included in the image of the DA16200.

● SFDP (Serial Flash Discoverable Parameters) information to control serial flash memory

● Debug certificate (optional)

● SW component (maximum of 3 components possible)

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 17 of 42 © 2021 Dialog Semiconductor

Image Header

SFDP

Cert Info

Length CRC
Length CRC
Length CRC
Length CRC

Content
Cert Chain

Cert A

Cert B

Cert C

3 level Debug Certificate

Reserved or Pad

Content

Comp 0

Comp 1

Comp 2

Figure 9: Certification Contents in DA16200

CertA, CertB are key certificates, and CertC is a content certificate in Figure 9. Content can be a
UEboot image, or an RTOS or SLIB binary built from ThreadX SDK.

● UEboot image (XXUEBOOTXX.img) built from our SDK contains a bootloader (UEboot) binary as
SW component (Comp0)

● RTOS image (XXRTOSXX.img) built from our SDK includes an RTOS binary as a SW
component (Comp0)

● SLIB image (XXSLIBXX.img) built from our SDK includes a ram library and TIM binary as SW

components (Comp0 and Comp1 respectively) in ThreadX SDK.

All CertA, CertB and CertC are generated with the Security Tool and attached to each binary
(UEboot, RTOS and SLIB binary) to make a bootable image for the DA16200.

● CertA and CertB are the same for all images while CertC is different for each image

● CertA with a Hbk1 (DM RoT) chain is generated with the name of "sboot_hbk1_3lvl_key_chain_
issuer.bin" in the dmpublic directory in the Security Tool

● CertB with Hbk1 is generated with the name "sboot_hbk1_3lvl_key_chain_publisher.bin" in the
dmpublic directory

● CertC is different from each image, because CertC contains the information of each image such
as content and size as described before

● CertC for the UEboot binary is generated with the name "sboot_hbk1_ueboot_cert.bin" in the
dmpublic directory

● CertC for the RTOS binary has the name "sboot_hbk1_cache_cert.bin"

● CertC for the SLIB binary has the name "sboot_hbk1_cm_cert.bin"

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 18 of 42 © 2021 Dialog Semiconductor

2.6.3 Secure Debug

Secure Debug is a certificate-based mechanism that uses an RSA private-public key scheme. It
enables secure debugging of the device.

Secure Debug supports the following operations:

● Does boot-time verification of debug certificates that enable authenticated debugging of secure
domains. The secure domains are controlled by the DCU (Debug Control Unit) registers on the
SoC

● Allows an authorizing party to shift the device into RMA LCS by using the same certificate
mechanism (This is called "Secure RMA")

There is a 2-certificate chain in the debug certificate: an enabler certificate and a developer
certificate. An enabler debug certificate can enable certain debug interfaces for a developer to debug
a certain device. The developer enters SoC-ID of the target device to extend this to an actual debug
certificate.

Figure 10 shows a three-level SD certificate scheme.

Header

PubKey A
Hash of PubKeyB

Signature
(PrivKeyA)

Key Certificate

Header

PubKey B
Hash of PubKeyC

OEM Mask RMA Flag
OEM Lock MASK

Signature
(PrivKeyB)

Enabler Certificate

Header

PubKey C
Debug Value

SoC Id
Debug Data

Signature
(PrivKeyC)

Developer Certificate

Figure 10: Three-Level SD Certificate Scheme

Note that the developer certificate can be generated with a SoC ID. If this does not match the target
device, then the debug interfaces (JTAG and UART) will not be enabled. Once a debug certificate is
verified during the boot sequence of the device, the permitted debug interfaces in the DCU mask of
the enabler certificate will be enabled (UART0 and JTAG for DA16200) for the designated device of
the SoC-ID in the developer certificate.

An enabler certificate has the following fields.

Table 4: Items in the Enabler Certificate

Items Condition Description

RMA-mode Mandatory if debug-mask is not
defined. Cannot be defined
together with debug-mask.

Defines whether to use this certificate for entry
into RMA LCS, by setting to a non-zero value.
Set when "Secure RMA" is run in the Security
Tool.

debug-mask Mandatory if RMA-mode is not
defined.
Cannot be defined together
with RMA-mode.

The DCU mask allowed by the enabler. A 128-
bit mask. Set when "Secure Debug" is run in
the Security Tool.

debug-lock Mandatory if RMA-mode is not
defined.

An additional DCU lock mask required by the
enabler and is a 128-bit mask. These bits are
added to the OTP-based mask.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 19 of 42 © 2021 Dialog Semiconductor

A developer certificate has the following fields.

Table 5: Items in the Developer Certificate

Items Condition Description

SoC-ID Mandatory. SoC-ID of the device. You can enable debug
interfaces of the device with this SoC-ID.
If you try to enable the debug interface of the
device with a different SoC-ID, it will fail.

debug-mask Mandatory if RMA-mode is
not defined.
Cannot be defined together
with RMA-mode.

The DCU mask allowed by the developer. A 128-
bit mask.

A debug certificate is generated at Secure Debug in the Security Tool, which includes a debug-mask
configuration in the enabler certificate and a SoC-ID for the developer certificate. An RMA certificate
is generated at Secure RMA in the Security Tool, which includes an RMA-mode configuration in the
enabler certificate and a SoC-ID for the developer certificate.

2.7 Device Provisioning

Device provisioning refers to burning secret keys and assets in the OTP memory of a device in a
secure manner. The CM keys and assets in Table 6 should be burned in the OTP in CM LCS, and
the DM keys and assets in Table 7 should be burned in the OTP in DM LCS.

Table 6: CM Keys and Assets in CM LCS

Key names or Assets Functions

Kpicv and Kceicv CM key

Hbk0 Root Of Trust

Asset CM DCU lock bits

Asset Configuration bits (General Purpose Flag)

A CMPU (CM Provisioning Utility) package binary contains all of the above items and is generated
when "Secure Production" is run in the Secure Tool.

Table 7: DM Keys and Assets in DM LCS

Key names or Assets Functions

Kcp and Kce DM key

Hbk1 Root Of Trust

Asset DM DCU lock bits

After the above secrets and asset are burned in the OTP memory, LCS automatically changes to
Secure LCS. When LCS changes to Secure LCS, the JTAG debug interface in the DA16200 is
disabled. In order to enable the JTAG debug interface again, the debug certificate scheme should be
applied. The platform key (Krtl) is required to generate a CMPU and DMPU package binary to
encrypt all assets as described in Section 2.2.2.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 20 of 42 © 2021 Dialog Semiconductor

2.8 Secure Asset

After device provisioning, secret keys in the OTP memory can be used to encrypt or decrypt user
data in the flash memory. It provides APIs and procedures to encrypt and manage data to be stored
in FLASH with the AES CCM method.

2.8.1 API for Secure Assets

Secure assets are encrypted data stored in FLASH. Data decryption is done with the key derived
from the provisioning key Kpicv or Kcp that is stored in the OTP memory. So, there is no risk of key
disclosure.

The Security Tool supports the creation of the secure asset, encrypted with a key derived from the
provisioning key.

The DA16200 SDK provides an API to decrypt assets with the key derived from the OTP memory
keys by the HW Crypto engine.

The Secure Asset Service uses a CMAC algorithm based on AES encryption and has a file size
restriction:

● The valid size of unencrypted data must be multiplied of 16 bytes

● The maximum size of unencrypted data cannot exceed 512 bytes

● The maximum size of the secure asset is 560 bytes including the header size

The decryption API provided by the SDK is FC9K_Secure_Asset(). See Table 8.

Table 8: Secure Asset Runtime APIs

extern UINT32 FC9K_Secure_Asset(

 UINT32 Owner

 , UINT32 AssetID

 , UINT32 *InAssetData

 , UINT32 AssetSize

 , UINT8 *OutAssetData

);

● Owner

Key type number. Use '1' for Kpicv, or '2' for Kcp.

● AssetID

ID information used in the encryption process.

● InAssetData

Secure Asset Data. This data must be loaded into SRAM since this function does not access
FLASH.

● AssetSize

Size of Secure Asset Data.

● OutAssetData

Decrypted Asset Data. This data must be allocated in SRFAM since this function does not run a
memory allocation.

The Secure Asset is generated with "CM.4.secuasset.bat" in the folder SBOOT.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 21 of 42 © 2021 Dialog Semiconductor

Figure 11: The Encryption Process of Secure Asset

Table 9 shows example code for decrypting a Secure Asset in FLASH.

Table 9: Secure Asset Decryption Process

UINT32 status;

UINT32 assetsiz, encassetsiz;

UINT8 *asset;

UINT8 *dump_encasset_hex = NULL;

UINT32 address ;

dump_encasset_hex = APP_MALLOC((512+48)); // header + asset

address = htoi(argv[1]);

encassetsiz = htoi(argv[2]);

status = sbrom_sflash_read(address, dump_encasset_hex, encassetsiz);

if(status == TRUE){

 asset = CRYPTO_MALLOC(512);

 assetsiz = FC9K_Secure_Asset(2 // 1 : Kpicv, 2 : Kcp

 , 0x00112233 // Asset ID

 , (UINT32 *)dump_encasset_hex // secure asset

 , encassetsiz // size of secure asset

 , asset); // decrypted asset

 if(assetsiz > 0){

 CRYPTO_DBG_DUMP(0, asset, assetsiz);

 }

 CRYPTO_FREE(asset);

}

PP_FREE(dump_encasset_hex);

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 22 of 42 © 2021 Dialog Semiconductor

2.8.2 Secure Storage

The Secure Storage is a concept similar to the Secure Asset, but some features are different. Secure
Storage is encrypted with a key derived from one of the following: user key, root key, Kcp or Kpicv. It
also supports full services to encrypt raw data and decrypt secure data, but the Secure Asset only
supports one way functions used to decrypt assets.

The following table shows the functions and related definition items for Secure Asset.

Table 10: Secure Asset Runtime APIs

typedef enum {

 ASSET_USER_KEY = 0,

 ASSET_ROOT_KEY = 1,

 ASSET_KCP_KEY = 2,

ASSET_KPICV_KEY = 4,

} AssetKeyType_t;

typedef struct {

 UINT8 *pKey;

 size_t keySize;

} AssetUserKeyData_t;

typedef struct {

 uint32_t token;

 uint32_t version;

 uint32_t assetSize;

} AssetInfoData_t;

#define CC_RUNASSET_PROV_TOKEN 0x416E7572UL

#define CC_RUNASSET_PROV_VERSION 0x10000UL

extern INT32 FC9K_Secure_Asset_RuntimePack(

 AssetKeyType_t KeyType

 , UINT32 noncetype

 , AssetUserKeyData_t *KeyData

 , UINT32 AssetID

 , char *title

 , UINT8 *InAssetData

 , UINT32 AssetSize

 , UINT8 *OutAssetPkgData

);

extern INT32 FC9K_Secure_Asset_RuntimeUnpack(

 AssetKeyType_t KeyType

 , AssetUserKeyData_t *KeyData

 , UINT32 AssetID

 , UINT8 *InAssetPkgData

 , UINT32 AssetPkgSize

 , UINT8 *OutAssetData

);

● AssetKeyType_t

This defines the type of the derived key stored in the OTP to be applied to the key derivation function
CMAC to be used for encryption. ASSET_ROOT_KEY means Huk, ASSET_KCP_KEY means Kcp,
and ASSET_KPICV_KEY means Kpicv. If the user-defined key is used in addition to the key stored
in OTP, it should be defined as ASSET_USER_KEY and KeyData should be set as input value.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 23 of 42 © 2021 Dialog Semiconductor

● AssetUserKeyData_t

This is a structure to define a user-defined key when ASSET_USER_KEY is used. The user-defined
key defines 128/192/256 bits, pKey defines the buffer pointer of Key Data, and keySize defines
16/24/32 Bytes, which means key length.

● FC9K_Secure_Asset_RuntimePack()

This function encrypts raw input data with an AES CCM method and has the following parameters:

○ KeyType

– Defines the type of decryption key to use for encryption.

○ Noncetype

– Defines how to generate the nonce information used in the encryption process. '0' is the
Nonce generated by TRNG, and '0xFFFFFFFF' is the Nonce generated by PRNG.

○ KeyData

– This means the parameter to input User Key when KeyType is defined as
ASSET_USER_KEY.

○ AssetID

– This is the ID information used in the encryption process.

○ Title

– This is a parameter to enter the title information of the Runtime Asset Package.

○ InAssetData

– This is the data pointer of the raw data to be encrypted.

○ AssetSize

– This is the size of the raw data and must be defined as 16 Bytes multiple for AES, which is
a block cipher.

○ OutAssetPkgData

– This is the data pointer of the encrypted Runtime Asset Package. Since the function does
not perform internal memory allocation, the data buffer for the output data should be pre-
allocated and allocated to Raw Data Size + 48 bytes, considering 48 bytes of information
field to be additionally tagged.

○ If the Return Value is less than 0, it means error. If the Return Value is larger than 0, it means
size information of output data OutAssetPkgData.

● FC9K_Secure_Asset_RuntimeUnpack()

This is a function to decrypt the encrypted input Runtime Asset Package, and the input parameter
needs to input the encryption parameter applied to function
FC9K_Secure_Asset_RuntimePack().

○ KeyType

– This should match the type of decryption key used in encryption.

○ KeyData

– If KeyType is defined as ASSET_USER_KEY, it should match key information used as
User Key.

○ AssetID

– This should match the ID information used for encryption.

○ InAssetPkgData

– This is the data pointer of the Runtime Asset Package to be decoded.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 24 of 42 © 2021 Dialog Semiconductor

○ AssetPkgSize

– This is the size of the Runtime Asset Package, which means Raw Data Size + 48 bytes.

○ OutAssetData

– This is the data pointer of the decoded raw data, and the size is the raw data size.

○ If the Return Value is less than 0, it means an error. If the Return Value is larger than 0, it
means size information of output data OutAssetData.

Table 11 and Table 12 show example code to implement Secure Storage in FLASH that use the
Runtime Pack / Unpack function.

Table 11: Encryption Process

{

 UINT32 status;

 UINT32 assetid, assetoff;

 INT32 assetsiz, pkgsiz;

 UINT8 *assetbuf, *pkgbuf;

 assetid = htoi(argv[2]); // Asset ID

 assetoff = htoi(argv[3]); // FLASH Offset

 assetsiz = htoi(argv[4]); // plaintext, InAssetPkgData size

 assetsiz = (((assetsiz + 15) >> 4)<< 4); // 16B aligned

 PRINTF(" Aligned Asset Size:%d\n", pkgsiz);

 assetbuf = APP_MALLOC(assetsiz);

 pkgbuf = APP_MALLOC(assetsiz + 48);

 if(assetbuf == NULL){

 return;

 }

 if(pkgbuf == NULL){

 APP_FREE(assetbuf);

 return;

 }

 // Step 1. Read Raw Data from FLASH

 pkgsiz = 0;

 status = sbrom_sflash_read(assetoff, assetbuf, assetsiz);

 // Step 2. AES Encryption

 if(status > 0){

 pkgsiz = FC9K_Secure_Asset_RuntimePack(ASSET_ROOT_KEY

 , 0

 , NULL, assetid, "RunPack"

 , assetbuf, assetsiz, pkgbuf);

 }

 // Step 3. Write Runtime Package Data to FLASH

 if(pkgsiz > 0){

 PRINTF("PKG Size:%d\n", pkgsiz);

 sbrom_sflash_write(assetoff, pkgbuf, pkgsiz);

 }

 APP_FREE(pkgbuf);

 APP_FREE(assetbuf);

 }

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 25 of 42 © 2021 Dialog Semiconductor

Table 12: Decryption Process

 {

 UINT32 status;

 AssetInfoData_t AssetInfoData;

 UINT32 assetid, assetoff, flagwrite;

 INT32 assetsiz, pkgsiz;

 UINT8 *assetbuf, *pkgbuf;

 assetid = htoi(argv[2]); // Asset ID

 assetoff = htoi(argv[3]); // FLASH Offset

 flagwrite = htoi(argv[4]); // Test only. flash write option flag

 // Step 1. Read Info Block of Runtime Asset Package

 status = sbrom_sflash_read(assetoff

 , (UINT8 *)(&AssetInfoData), sizeof(AssetInfoData_t));

 if(status == 0){

 PRINTF("SFLASH Read Error:%x\n", assetoff);

 return;

 }

 if((AssetInfoData.token == CC_RUNASSET_PROV_TOKEN)

 && (AssetInfoData.version == CC_RUNASSET_PROV_VERSION)){

 assetsiz = AssetInfoData.assetSize;

 PRINTF("Stored PKG Size:%d\n", assetsiz);

 pkgsiz = assetsiz + 48;

 }else{

 PRINTF("Illegal Asset Package:%X.%X\n"

 , AssetInfoData.token, AssetInfoData.version);

 return;

 }

 assetbuf = APP_MALLOC(assetsiz);

 pkgbuf = APP_MALLOC(pkgsiz);

 if(assetbuf == NULL){

 return;

 }

 if(pkgbuf == NULL){

 APP_FREE(assetbuf);

 return;

 }

 // Step 2. Read Runtime Asset Package form FLASH

 assetsiz = 0;

 status = sbrom_sflash_read(assetoff, pkgbuf, pkgsiz);

 // Step 3. AES Decryption

 if(status > 0){

 assetsiz = FC9K_Secure_Asset_RuntimeUnpack(ASSET_ROOT_KEY

 , NULL, assetid, pkgbuf, pkgsiz, assetbuf);

 }

 if(assetsiz > 0){

 PRINTF("ASSET:%d\n", assetsiz);

 CRYPTO_DBG_DUMP(0, assetbuf, assetsiz);

 // Step 4. Test only. Write Raw Data to FLASH

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 26 of 42 © 2021 Dialog Semiconductor

 if(flagwrite == 1){

 sbrom_sflash_write(assetoff, assetbuf, assetsiz);

 }

 }else{

 PRINTF("ASSET:decryption error (%x)\n", assetsiz);

 }

 APP_FREE(pkgbuf);

 APP_FREE(assetbuf);

 }

2.8.3 Secure NVRAM

The contents in NVRAM can be encrypted with the above runtime APIs for security. Huk, Kpicv, and
Kcp in the OTP are used in Secure NVRAM.

When the NVRAM APIs are used, which are described in SDK Programmer Guide document, the
user can read and write certain items in the NVRAM area on the flash memory.

When Secure NVRAM is enabled by the following commands, the items to write to the flash will be
encrypted before writing, and the items to read will be decrypted when reading from the flash
internally.

[DA16200] nvram.nvedit secure 1 // Key selection: 1 HUK, 2 Kpicv, 4 Kcp

[DA16200] nvram.nvedit save sflash // Activates Secure NVRAM. Henceforth,

encryption and decryption will be performed internally whenever read or write to the

NVRAM occurs.

Cryptographic Acceleration

MbedTLS APIs are used for cryptographic functions in DA16200. MbedTLS is an open source SSL
library that enables developers to include cryptographic and SSL/TLS capabilities in their embedded
products, with a minimal coding footprint.

You can choose between HW-accelerated cryptographic operations and the SW cryptographic
implementation of Mbed TLS for each feature supported by both Mbed TLS and CryptoCell-312:

● The Mbed TLS cryptographic implementation provides an interface to the standard cryptographic
operations. For example, AES, RSA or ECC

● The dedicated CryptoCell-312 APIs provide an interface to the non-standard or specific
CryptoCell-312 operations. For example, key derivation using HUK

Mbed TLS and CryptoCell-312 are flexible in terms of which features are compiled in each. To
control which components are Mbed TLS-based or CryptoCell-312-based, you must edit the config-
cc312.h configuration file. This file is located in crypto/inc/mbedtls/config.h. It includes all the flags
that are supported by Mbed TLS, with the additional XXX_ALT definitions. These XXX_ALT
definitions are for the components that are accelerated by the HW.

By default, Dialog's SDK comes with the minimal required features that CryptoCell-312 accelerates.
See the DA16200 DA16600 SDK Programmer Guide [2] on how to use mbedTLS APIs. Table 13
shows the supported HW acceleration crypto algorithms in DA16200.

Table 13: HW Acceleration Crypto Algorithms

Algorithm Mode Key Sizes

AES
ECB, CBC, CTR, OFB,CMAC,
CBC-MAC, AES-CCM, AES-
CCM*, AES-GCM

128 bits, 192 bits and 256 bits

AES key wrapping N/A All

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 27 of 42 © 2021 Dialog Semiconductor

Chacha and Chacha-Poly1305 N/A N/A

Diffie-hellman
• ANSI X9.42-2003: Public Key
Cryptography for the Financial Services
Industry: Agreement of Symmetric Keys
Using Discrete Logarithm Cryptography
• Public-Key Cryptography Standards
(PKCS) #3: DiffieHellman Key
Agreement Standard.

N/A
1024 bits, 2048 bits and
3072bits

ECC key generation N/A NIST curves and 25519 curves

ECIES N/A NIST curves and 25519 curves

ECDSA N/A NIST curves and ED25519

ECDH N/A NIST curves and 25519 curves

Hash SHA1, SHA224 and SHA256 N/A

HKDF N/A N/A

HMAC SHA1, SHA224 and SHA256 N/A

KDF
NIST SP 800-108: Recommendation for
Key Derivation Using Pseudorandom
Functions

CMAC or HMAC N/A

RSA PKCS#1 operations
• Public-Key Cryptography Standards
(PKCS) #1 v2.1: RSA Cryptography
Specifications.
• Public-Key Cryptography Standards
(PKCS) #1 v1.5: RSA Encryption.

Encryption and signature
schemes

2048 bits, 3072 bits and
4096bits

RSA key generation N/A 2048 bits and 3072 bits

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 28 of 42 © 2021 Dialog Semiconductor

3 Security Tool

The Security Tool is provided to generate secret keys, certificates, and secure binary images for the
DA16200. There are four major things users can do with the Security Tool:

● Generate RoT (Hbk0, Hbk1), CM/DM secret keys (Kpicv, Kceicv, Kcp, and Kce). It also
generates CMPU and DMPU binary which contain all keys to be burned into OTP memory.

● Build Secure Boot images (secure bootloader, RTOS and SLIB Images) that run on DA16200.

● Generate Secure Debug certificates and images.

● Generate RMA certificates and image.

Figure 12 shows the top window of the Security Tool when running "CM.1.secuman.bat" at SBOOT
directory in our SDK.

Figure 12: Top Window of the Security Tool

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 29 of 42 © 2021 Dialog Semiconductor

3.1 Role Selection

There are three roles to be selected before use:

● Single manager

"Single" is a top manager who is responsible to generate and manage all secret keys of the product.
Only the Single Manager has the authority to generate, renew or remove the secret keys. Most
importantly, the private key that corresponds to the RoT (Hbk0 and Hbk1) in the OTP memory should
be kept and maintained by the Single Manager.

The Single Manager has the responsibility to keep the private key to himself and not expose the
private key for any reason. If exposed for any reason, the product that has the corresponding RoT in
the OTP should be recalled, because there is no use of the security for that product any more. For
this reason, be extra careful when a user takes on the role of "Single" manager.

● SB Publisher

The “SB Publisher" role has to generate the third certificate, i.e. the content certificate, which is
needed for Secure Boot in a three-level certificate scheme and to rebuild Secure bootable images
with it (all UEboot, RTOS, and SLIB images).

Only the Secure Boot menu is enabled for this role. The main responsibility of this role is to remove
the debug certificate in the image after Secure Debug. A debug certificate is in place in the images
after running Secure Debug. An image with a debug certificate will enable debug interfaces. Use this
role to remove the debug certificate and build only Secure Boot images that disable debug interfaces
for security.

● SB/SD Publisher

The "SB/SD Publisher" role has to generate the third certificate, i.e. the content certificate, which is
needed for Secure Boot in a three-level certificate scheme and to rebuild Secure Boot images with it
(all UEboot, RTOS, and SLIB images).

In addition, the "SB/SD Publisher" role has to generate the Debug certificate for Secure Debug with
the SoC-ID of the target device enabling the debug interface (JTAG port) of the target device and to
rebuild Secure bootable images (only the UEboot image is rebuilt).

Only Secure Boot and Secure Debug menus are enabled for the SB/SD Publisher role. See Figure
13.

Figure 13: Secure Boot and Secure Debug Menus

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 30 of 42 © 2021 Dialog Semiconductor

When Secure Debug is selected, a window is shown that requests the Soc-ID of the target device.
See Figure 14.

Figure 14: Request the Soc-ID in Secure Debug

The SoC-ID of the target device can be checked with the following console command:

● [/DA16200] sys.socid

Copy the soc-id that you get with the above-mentioned command to the SoC-ID field in the Security
Tool window. Note that SoC-ID is only valid when the target device is in Secure LCS. The SB/SD
Publisher role is useful when the user wants to make their third party (or developer) debug the end-
product in the field and not expose secrets. The third party can make a secure bootable image with
this role and debug the product.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 31 of 42 © 2021 Dialog Semiconductor

3.2 Secure Production

Secure Production generates all the secret keys such as CM keys, DM keys, and keys for the 2nd
certificate and 3rd certificate. And the certificate chains that use the generated keys are generated to
make a Secure Boot and Secure Debug image.

The following table shows which files are generated when Secure Production is used.

Table 14: The Secret Keys for Secure Production

Items CM/DM keys Directory Generated Files

CM keys CM keys cmsecret OTP keys: cmkey_pair.pem, kceicv.bin,
kpicv.bin.

Private keys for Secure Boot:
cmissuer_keypair.pem,
cmpublisher_keypair.pem.

Private keys for Secure Debug:
cmenabler_keypair.pem,
cmdeveloper_keypair.pem.

DM keys DM keys dmsecret OTP keys: dmkey_pair.pem, kce.bin, Kcp.bin.

Private keys for Secure Boot:
dmissuer_keypair.pem,
dmpublisher_keypair.pem.

Private keys for Seucre Debug:
dmenabler_keypair.pem,
dmdeveloper_keypair.pem.

certificates for
Secure Boot

with CM keys cmpublic sboot_hbk0_3lvl_key_chain_issuer.bin,

sboot_hbk0_3lvl_key_chain_publisher.bin.

with DM keys dmpublic sboot_hbk1_3lvl_key_chain_issuer.bin,

sboot_hbk1_3lvl_key_chain_publisher.bin,

and content certificates for UEboot, RTOS and
SLIB images.

certificates for
Secure Debug

with CM keys cmpublic sdebug_hbk0_3lvl_key_chain_enabler.bin,

sdebug_hbk0_3lvl_key_chain_developer.bin.

with DM keys dmpublic sdebug_hbk1_3lvl_key_chain_enabler.bin,

sdebug_hbk1_developer_pkg.bin.

To enter CM and DM secret keys into OTP memory, special binaries called CMPU package and
DMPU package are also generated after Secure Production.

● CMPU package binary contains the items in Table 14

● DMPU package binary contains the items in Table 14

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 32 of 42 © 2021 Dialog Semiconductor

Note that "Krtl.key" (the platform key) should be in place in directory cmsecret beforehand in order to
run Secure Production. If there is no proper platform key in directory cmsecret, Secure Production
will not run. The platform key will be provided by Dialog Semiconductor upon request.

After successful Secure Production, the platform key will be deleted by the Security Tool for security
concerns. The platform key should not be exposed for any reason.

When the Secure Production button is clicked on the Security Tool, the below shown confirmation
window appears to prevent that the user removes the files by mistake.

Figure 15: Prevent Accidental Removal of Secret Keys in Secure Production

When the Security Tool is used for the first time, select Yes to All. The Secure Production process
starts logging on both the console window and the log file in the example directory.

The log messages for Secure Production are saved in file secure_production.txt in the example
directory. The procedure or error messages can be checked with this file.

Be careful when it is not first time that the Security Tool is used, and you want to select Yes to All.
Because in this case the previously generated secret keys and certificates will be lost and
regenerated from scratch.

After successful Secure Production, files cmpu.pkg.bin and dmpu.pkg.bin are in the public
directory. At production time, these package binaries should be downloaded to Sflash memory at the
address shown in Table 15.

Table 15: CMPU/DMPU download address in Sflash

Binary Start Address

Cmpu.pkg.bin 0x001F_2000

Dmpu.pkg.bin 0x001F_3000

Note that the addresses above are the default address in our SDK and can change under user's
conditions. And UEboot for the production version should be used at production time.

There are UEboot binaries provided in the image directory and the user must set them for the
respective purposes.

Table 16: UEboot Binary Definition of Secure Boot, None Secure Boot and RMA

UEboot binary name Purpose

DA16xxx_ueboot.bin.SecureBoot Production version UEboot

DA16xxx_ueboot.bin.NoneSecure Normal version UEboot

DA16xxx_ueboot.bin.RMA RMA version UEboot

Before the SDK is built, UEboot binaries should be renamed to build a bootable UEboot image
(DA16xxx_ueboot_xxx.img). After the SDK is built, a bootable UEboot image is available in the
public directory.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 33 of 42 © 2021 Dialog Semiconductor

Table 17: UEboot Binary Setting for Secure Boot, None Secure Boot and RMA

SDK Secure Type UEboot Binaries Setting

ThreadX Secure Boot DA16xxx_ueboot.bin.Secure.2MB → DA16xxx_ueboot.bin.2MB

DA16xxx_ueboot.bin.Secure.4MB → DA16xxx_ueboot.bin.4MB

None Secure

Secure Debug

DA16xxx_ueboot.bin. NonSecure.2MB → DA16xxx_ueboot.bin.2MB

DA16xxx_ueboot.bin. NonSecure.4MB → DA16xxx_ueboot.bin.4MB

RMA DA16xxx_ueboot.bin. RMA.2MB → DA16xxx_ueboot.bin.2MB

DA16xxx_ueboot.bin. RMA.4MB → DA16xxx_ueboot.bin.4MB

FreeRTOS Secure Boot DA16xxx_ueboot.bin.Secure.4MB → DA16xxx_ueboot.bin.4MB

None Secure

Secure Debug

DA16xxx_ueboot.bin. NonSecure.4MB → DA16xxx_ueboot.bin.4MB

RMA DA16xxx_ueboot.bin. RMA.4MB → DA16xxx_ueboot.bin.4MB

For the CMPU and DMPU process, all UEboot, RTOS and SLIB images(For ThreadX SDK) should
be downloaded to Sflash beforehand.

To download the UEboot image, run the following command at the MROM prompt and select the
production version UEboot image.

○ [MROM] loady boot

In case of ThreadX SDK, download the RTOS and SLIB images.

○ [MROM] loady a000 // for RTOS image

○ [MROM] loady f1000 // for SLIB image of 2MB Flash

[MROM] loady 18a000 // for SLIB image of 4MB Flash

○ Power OFF and ON

○ [DA16200] reset // to enter into MROM

In case of FreeRTOS SDK, download the RTOS image.

○ [MROM] loady 23000 // for RTOS image

○ Power OFF and ON

○ [DA16200] reset // to enter into MROM

To download the CMPU binary, run the next command at the MROM prompt and select
cmpu.pkg.bin.

○ [MROM] loady 1f2000 1000 bin

To download the DMPU binary, run the next command at the MROM prompt and select
dmpu.pkg.bin.

○ [MROM] loady 1f3000 1000 bin

The command(sys.sprod) in the RTOS image is used to write secrets into the OTP memory.
Therefore, an RTOS image should be run to provision the secrets in the CMPU and DMPU binaries.
The user needs to boot with RTOS. To do so, press the power off/on button, or use the boot

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 34 of 42 © 2021 Dialog Semiconductor

command at the MROM prompt. hbk0 and CM keys can be burned into the OTP memory with the
below-mentioned command on the [DA16200] prompt in RTOS.

○ [DA16200] sys.sprod

When successful, the following message is output:

● Product.CMPU: 0

After the power off/on is pressed, the LCS of the DA16200 will change from CM LCS to DM LCS.

hbk1 and DM keys can be burned into the OTP memory with command:

○ [DA16200] sys.sprod

When successful, the following message is output:

● Product.DMPU: 0

After the power off/on button is pressed, the LCS of the DA16200 will change from DM LCS to
Secure LCS, in which JTAG is disabled and only enabled again with a Debug Certificate. Once
completed, the CMPU and DMPU binary in the flash should be deleted for security reasons.
Command sys.sprod will erase the binaries on the flash.

○ [DA16200] sys.sprod

Command sys.sprod will output some messages similar to that shown in Table 18.

Table 18: The Success Message to Change from DM to Secure LCS

CC_BsvSocIDCompute return SocID

 7D D2 00 E0 F1 06 43 F5 AF 5A 17 3F BF A6 8E 3D

 03 4C B7 DA AA 6D DB 39 51 0B F5 D5 62 7E 2C 8F

Product.CMPU: Erased

Product.DMPU: Erased

Product.SLock: 1

Product.State: Secure Boot Scenario - Good

The example shows the SoC ID of the device (it will be different from your device) and the status of
the CMPU and DMPU binary (whether they are erased or not). Command Product SLock shows the
status of a control bit in the OTP. If the value is 1, then the DA16200 performs a secure boot.

After all the above-mentioned procedures are completed, the production version of UEboot should be
replaced with a normal version of UEboot (rename "DA16xxx_ueboot.bin.NoneSecure" to
"DA16xxx_ueboot.bin" in the "image" directory and build the SDK) with the following command at the
MROM prompt to download the image.

○ [MROM] loady boot

The following table summarizes which directories are the most important ones after Secure
Production and that should not be exposed for any reason because of security.

Table 19: The Directory Definition for Secure Production

Directory What is in there

cmsecret CM private keys and encryption keys (private/public key pair,
Kceicv, and Kpicv)

cmpublic 1st and 2nd certificate for Secure Boot and Secure Debug that
use Hbk0 (CM root key)

dmsecret DM private keys and encryption keys (private/public key pair,
Kcp, and Kce)

dmpublic 1st, 2nd and 3rd certificate for Secure Boot and Secure Debug
that use Hbk1 (DM root key)

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 35 of 42 © 2021 Dialog Semiconductor

Secure Boot images with the certificate chain based on the above-mentioned keys are generated in
the public directory.

● Secure Boot images in ThreadX SDK

○ UEboot image (XXUEBOOTXX.img) built from our SDK contains a bootloader (UEboot)
binary

○ RTOS image (XXRTOSXX.img) built from our SDK contains an RTOS binary

○ SLIB image (XXSLIBXX.img) built from SDK contains a ram library and TIM binary

● Secure Boot images in FreeRTOS SDK

○ UEboot image (XXUEBOOTXX.img) built from our SDK contains a bootloader (UEboot)
binary

○ RTOS image (XXRTOSXX.img) built from our SDK contains an RTOS and SLIB binaries.

If the target device already went through the CMPU and DMPU process as described before, and the
above images were downloaded to the Sflash at the proper address, it will boot correctly.

3.3 Key Renewal

When one of the 2nd and 3rd private keys is exposed for any reason, those private keys need to be
changed with the Key Renewal menu. Be careful and think twice before this menu is used, because
after this menu is used, all previously generated 2nd, 3rd private keys and certificates are deleted
and regenerated from scratch (Note that RoT (1st private key) cannot be changed).

If you click the Key Renewal button in the Security Tool, the confirmation window shown in Figure 16
displays to prevent that this key renewal action is done by mistake.

Figure 16: Warning to Prevent Accidental Removal Secret Keys in Key Renewal

To do the key renewal, select Yes to All. The previously generated 2nd and 3rd private keys, and
the certificates are deleted and regenerated.

The following table summarizes which directories are updated after key renewal.

Table 20: The Directory Definition for Key Renewal

Directory What is in there

dmsecret 2nd/3rd private keys for Secure Boot and Secure Debug.

dmpublic 1st/2nd/3rd certificates for Secure Boot and Secure Debug that
use Hbk1 (DM root key).

dmpubkey 2nd/3rd public keys.

dmtpmcfg Configurations.

public Images with the certificate chain for Secure Boot.

Secure Boot images with the certificate chain based on the renewed keys are generated in the
public directory.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 36 of 42 © 2021 Dialog Semiconductor

The file key_renewal.txt in the example directory is a log file for the Key Renewal process. The file
can be used to check the log or read error messages that occurred.

3.4 Secure Boot

After running the Secure Debug menu, the generated image contains a Debug Certificate but no
Content Certificate chain. See Figure 17.

Image Header

SFDP

Cert Info

Length CRC
Length CRC
Length CRC
Length CRC

Content
Cert Chain

Cert A

Cert B

Cert C

3 level Debug Certificate

Reserved or Pad

Content

Comp 0

Comp 1

Comp 2

Figure 17: Debug Certificate of Secure Debug Menu

For Secure Boot, an image with a Content Certificate chain is required without a Debug certificate.

To generate images for Secure Boot, run the menu item Secure Boot. Secure Boot images with the
certificate chain are generated in the public directory.

● Secure Boot images in ThreadX SDK

○ UEboot image (XXUEBOOTXX.img) contains a bootloader (UEboot) binary

○ RTOS image (XXRTOSXX.img) contains RTOS binary

○ SLIB image (XXSLIBXX.img) contains a ram library and a TIM binary

● Secure Boot images in FreeRTOS SDK

○ UEboot image (XXUEBOOTXX.img) contains a bootloader (UEboot) binary

○ RTOS image (XXRTOSXX.img) contains RTOS and SLIB binaries

File secure_debug.txt in the example directory is a log file for Secure Boot process. The file can be
used to check the log and read error messages that occurred.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 37 of 42 © 2021 Dialog Semiconductor

3.5 Secure Debug

The debug port in the DA16200 JTAG is disabled by default when entered into Secure LCS as
described before. When this debug port needs to be re-enabled for debug purposes, then a Secure
Debug image should be used. There is an optional Debug certificate field in an image as described
before.

At the boot sequence, a check is done to see whether the Debug certificate exists in the image. If a
Debug certificate exists, then the SoC ID in the Debug certificate is checked to see if it matches with
the target device. When it does match, the debug port is enabled and boot.

When Secure Debug is run in the Security Tool, the window shown in Figure 18 will display to enter
the SoC ID of the target device. Use command sys.socid in the console to check what the SoC-ID is
of the target device.

○ [DA16200] sys.socid

Figure 18: Window to Enter SoC ID in Secure Debug

You can copy the SoC-id from the console command to the window shown in Figure 18 and then
click UPDATE.

The following table summarizes which directories are updated from Secure Debug.

Table 21: Directory Definition for Secure Debug

Directory What is in there

dmpublic Developer certificate with the SoC-ID.

public Images with Debug certificate.

Secure Debug images with the Debug certificate are generated in the public directory.

● Secure Debug images in ThreadX SDK

○ UEboot image (XXUEBOOTXX.img) includes a bootloader (UEboot) binary

○ RTOS image (XXRTOSXX.img) includes the RTOS binary

○ SLIB image (XXSLIBXX.img) includes the ram library and TIM binary

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 38 of 42 © 2021 Dialog Semiconductor

● Secure Debug images in FreeRTOS SDK

○ UEboot image (XXUEBOOTXX.img) includes a bootloader (UEboot) binary

○ RTOS image (XXRTOSXX.img) includes the RTOS and SLIB binaries

File secure_debug.txt in the example directory is a log file for the Secure Debug process. The file
can be used to check the log and read error messages that occurred.

3.6 Secure RMA

As described earlier, the LCS of the chip should be changed to RMA-LCS before the chip is sent to
the chip maker (i.e. Dialog Semiconductor) for analysis.

A Debug certificate that has an RMA flag enabled (RMA certificate) is required to enter a device into
RMA LCS. In addition, to erase secret keys in the OTP memory, a specific UEBoot binary for RMA is
required. This UEboot binary for RMA is provided in the SDK with the name UEbootXXRMAXX.bin.
Like Secure Debug, Secure RMA is allowed for a specific device and a SoC-ID is required for the
RMA certificate.

When changing to RMA-LCS, secret keys in the OTP memory such as Kpicv, Kceicv, Kcp, and Kce
are erased to prevent that the user's secret keys are exposed and the debug port (JTAG) is re-
enabled for debugging purposes.

When running Secure RMA, the window in Figure 19 will be displayed to enter the SoC-ID in the
RMA certificate for the target device. Copy and paste the SoC-ID from console command sys.socid
to the Security Tool window and then click UPDATE.

Figure 19: Window to Enter SoC ID in RMA

There are two images with an RMA certificate generated in the public directory: DA16xxx_rma.img
and DA16xxx_rma_icv.img. Image DA16xxx_rma.img is for the RMA image with DM keys and will
erase the DM keys in the OTP. Image DA16xxx_rma_icv.img is for the RMA image with CM keys and
will erase the CM keys in the OTP.

After UEboot for RMA to the Sflash is updated, do the following for the RMA process.

○ [MROM] loady boot [RMA version of UEboot]

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 39 of 42 © 2021 Dialog Semiconductor

To run an RMA image with DM keys, run the following command at the MROM prompt and download
DA16xxx_rma.img.

○ [MROM] loady 1f2000 1000 bin

After downloading, you need to reboot the system and set the DM RMA flag using the following
command at the [DA16200] prompt:

○ [DA16200] sys.sbrom sflash 1f2000

○ Power OFF and ON // for POR

To run an RMA image with CM keys, run the following command at the MROM prompt and download
DA16xxx_rma_icv.img.

○ [MROM] loady 1f2000 1000 bin

After downloading, you need to reboot the system and set the CM RMA flag using the following
command at the [DA16200] prompt:

○ [DA16200] sys.sbrom sflash 1f2000

○ Power OFF and ON // for POR

All HUK, CM and DM keys are erased from OTP in the UEBoot initialization phase during POR boot.

To check if the device entered properly into RMA, use command sys.socid.

After the above steps are done, the None Secure UEBoot image should be in place again on the
Sflash.

○ [MROM] loady boot [None Secure of UEboot]

Table 22 summarizes which directories are updated from Secure RMA.

Table 22: The directory Definition for Secure RMA

Directory What is in there

cmpublic Debug certificate with RMA enabled (RMA certificate) with CM
key chain (Hbk0).

dmpublic Debug certificate with RMA enabled (RMA certificate) with DM
key chain (Hbk1).

public Images with RMA certificate with both DM key chain and CM key
chain (DA16xxx_rma.img and DA16xxx_rma_icv.img).

File secure_rma.txt in the example directory is a log file for the Secure RMA process. The file can
be used to check the log and read error messages that occurred.

3.7 Remove Secrets

When the user wants to have a 3rd party (or developer) debug the end-product in the field, the user
should run menu Remove Secrets before the SBOOT directory is delivered to the 3rd party (or
developer), to remove all important secret keys and certificates. Note that before running this menu,
the original SBOOT directory should be already backed-up in a safe location because all secret keys
will be removed. Then, the 3rd party (or developer) can make its own debug images with the SBOOT
and IAR environment.
After debugging is done by the 3rd party (or developer), the user should apply the resolving patch
codes from the 3rd party to the SDK and build the SDK with IAR, which makes UEboot, RTOS and
SLIB binaries in ThreadX SDK that are copied to the image directory.

When you use the Remove Secrets menu, a confirmation window shows. See Figure 20.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 40 of 42 © 2021 Dialog Semiconductor

Figure 20: Warning to Prevent Unwanted Removal of Secret Keys in Secure RMA

Select Yes to All if you are sure that you want to remove all secrets. Next, the window in Figure 21
shows.

Figure 21: Remove Secret Keys in Secure RMA

This is to determine to whom SBOOT will be sent and what files should be removed accordingly.

Files that will be removed according to the selected target are summarized in Table 23.

Table 23: Directory Definition to Remove Secret Keys in Secure RMA

Target Directory Removed files

SB Publisher cmsecret All files

cmpublic All files

dmsecret All files except
dmpublisher_keypair.pem

dmpublic enc.kce.bin, enc.kcp.bin,
and all sdebug_* files

SB/SD Publisher cmsecret All files

cmpublic All files

dmsecret All files except
dmpublisher_keypair.pem,
dmdeveloper_keypair.pem

dmpublic enc.kce.bin, enc.kcp.bin,
sdebug_hbk1_enabler_rma_pkg.bin,
sdebug_hbk1_developer_rma_pkg.bin

After this, SBOOT can be sent to the 3rd party (or developer) for debugging or development
purposes.

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 41 of 42 © 2021 Dialog Semiconductor

Revision History

Revision Date Description

1.8 9-Dec-2021 Add Table 17: UEboot Binary Setting for Secure Boot, None Secure

Boot and RMA

1.7 23-Nov-2021 Update 3.5 RMA procedure

Add the guide of security tool in FreeRTOS SDK

Change title and file name from DA16200 to DA16200 DA16600

1.6 15-May-2020 Update User Manual for Security Tool v2.0

1.5 21-04-2020 Add 3.3.6 Remove CMPU and DMPU Binary

1.4 16-Dec-2019 Add Write CM and DM package at Sflash

Add Change Life Cycle Status (LCS)

Add Change to secure boot mode

1.3 16-Dec-2019 Editorial review

1.1 11-Sept-2019 Update 3.2 How to generate and burn secret keys

1.0 03-Jul-2019 Preliminary DRAFT Release

UM-WI-015

DA16200 DA16600 Security Tool

User Manual Revision 1.8 9-Dec-2021

 42 of 42 © 2021 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not
designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications
where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury,
death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog
Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the
customer’s own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the
specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive
grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without
limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard
automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications
referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service
names and marks are the property of their respective owners.

 © 2021 Dialog Semiconductor. All rights reserved

Contact Dialog Semiconductor

General Enquiry: Local Offices:

Enquiry Form https://www.dialog-semiconductor.com/contact/sales-offices

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/
https://www.dialog-semiconductor.com/company/inquiry
https://www.dialog-semiconductor.com/contact/sales-offices

	Abstract
	Contents
	Figures
	Tables
	Terms and Definitions
	References
	1 DA16200 Security
	1.1 Security Engine
	1.2 H/W Components
	1.3 S/W Architecture

	2 Security Features
	2.1 Security Services
	2.1.1 Secure Boot
	2.1.2 Secure Debug
	2.1.3 Secure Asset

	2.2 Secret Keys
	2.2.1 HUK (Device Key)
	2.2.2 Platform Key (Krtl)
	2.2.3 Chip Master (CM) Keys
	2.2.4 Device Master (DM) Key

	2.3 RoT
	2.4 OTP Memory
	2.5 Life Cycle States (LCS)
	2.5.1 CM LCS
	2.5.2 DM LCS
	2.5.3 Secure LCS
	2.5.4 RMA LCS

	2.6 Boot Services
	2.6.1 Secure Boot
	2.6.2 Secure Boot Flow
	2.6.3 Secure Debug

	2.7 Device Provisioning
	2.8 Secure Asset
	2.8.1 API for Secure Assets
	2.8.2 Secure Storage
	2.8.3 Secure NVRAM

	3 Security Tool
	3.1 Role Selection
	3.2 Secure Production
	3.3 Key Renewal
	3.4 Secure Boot
	3.5 Secure Debug
	3.6 Secure RMA
	3.7 Remove Secrets

	Revision History

