Skip to main content

Bluetooth low energy

SmartBond™: power, size and system cost without compromise

Bluetooth® low energy is the de facto low power standard for connecting devices to each other and to the cloud. Highly integrated, the SmartBond™ SoC family features the smallest, most power efficient Bluetooth low energy solutions available and enables the lowest system costs. An extensive suite of support tooling ensures ease of use and a fast route to market.

Latest News Success Stories

Bluetooth Low Energy
SmartBond™ Product Portfolio Download PDF
Part Number DA14699/7/5/1 DA14683 DA14682 DA14586 DA14585 DA14531/0 DA14531MOD
  Product Description The world’s most advanced wireless microcontroller product family Single-chip high-security Bluetooth 5 solution with expandable memory Small size, low power and most integrated Bluetooth 5 SoC The world’s smallest and lowest power Bluetooth 5.1 System-on-Chip which enables the next 1billion IoT devices The DA14531 SmartBond TINY™ Module, based on the world’s smallest and lowest power Bluetooth 5.1 system-on-Chip
TYPE
SoC      
SiP          
Module            
TECHNOLOGY
Bluetooth® LE 5.2 5.0 5.0 5.0 5.0 5.1 5.1
2.4 GHz proprietary            
CORE SYSTEM
CPU 96MHz Arm
Cortex-M33
Floating Point DSP Extension
96MHz Arm
Cortex-M0
96MHz Arm
Cortex-M0
16MHz Arm
Cortex-M0
16MHz Arm
Cortex-M0
16MHz Arm
Cortex-M0+
16MHz Arm
Cortex-M0+
RAM 512kB
384kB (691)
128kB 128kB 96kB 96kB 48kB 48kB
ROM
OTP
128kB
4kB
128kB
64kB
128kB
64kB
128kB
64kB
128kB
64kB
144kB
32kB
144kB
32kB
Flash QSPI Flash QSPI Flash 1024kB 256kB SPI Flash SPI Flash 128kB
Crystals 32MHz+32kHz 32/16MHz+32kHz 32/16MHz+32kHz 16MHz+32kHz 16MHz+32kHz 32MHz 32MHz
POWER
Internal DCDC Buck Buck Buck Buck&Boost Buck&Boost Buck&Boost Buck
External System Power Rails 2x1.8V, 1x3.3V 2x1.8V, 1x3.3V 2x1.8V, 1x3.3V        
Charger ● ● ● ○        
SECURITY
AES/SHA 256/512 256/512 256/512 128 128 128 128
ECC/TRNG ● ● ● ● ● ●     ○ ● ○ ●
Secure Key Handling        
RADIO
Frequency 2.4GHz 2.4GHz 2.4GHz 2.4GHz 2.4GHz 2.4GHz 2.4GHz
Tx Power 6dBm 0dBm 0dBm 0dBm 0dBm 2.5dBm 2.2dBm
Rx Sensitivity -97dBm -94dBm -94dBm -93dBm -93dBm -94dBm -94dBm
PERIPHERALS
UART/SPI/I2C 3/2/2 2/2/2 2/2/2 2/1/1 2/1/1 2/1/1 2/1/1
QSPI XiP
On-the-fly decryption
2/2/2/1
1
1
       
USB FS/HS 1 1 1        
Timers/PWM/RTC 4/4/1 3/3 3/3 4/2 4/2 3/2/1 3/2/1
I2S,PCM/PDM 8CH/2CH 8CH/2CH 8CH/2CH 8CH/2CH 8CH/2CH    
LCD ● ● ● ○            
Keyboard/QDEC/IR   ● ● ● ● ● ● ● ● ○ ● ● ○ ● ● ○ ● ● ○
ADC 8CH 10b
8CH 14b
8CH 10b 8CH 10b 4CH 10b 4CH 10b 4CH 10b 4CH 10b
LED driver 2 2 ○ ○ 3 3        
Temperature sensor    
Other Haptics / Motor Controller            
APPLICATIONS
Appliances
Asset Tracking    
Beacons      
Consumer Electronics
Direction finding            
Gaming and AR/VR        
Industrial Automation      
Medical and Healthcare
MESH networks        
PC Peripherals
Smart Home and Building
Wearables  
Wireless Ranging (WiRa)            
Smart door-locks        
IoT sensors
PACKAGES
Type#Pins (#GPIO)
Dimensions
VFBGA100 (55)
5x5 mm
(699/697)
WLCSP53 (21)
3.41x3.01 mm

AQFN60 (37)
AQFN60 (31)
6x6 mm
QFN40 (24)
5x5 mm
WLCSP34 (14)
2.40x2.66 mm

QFN40 (25)
WLCSP17 (6)
1.7x2.05 mm
(531 only)
MOD16 (9)
12.5x14.5 mm
Operating Temperature -40 to 85°C -40 to 85°C -40 to 85°C -40 to 85°C -40 to 85/105°C -40 to 85°C -40 to 85°C
Supply Voltage Range 2.4 to 4.75V 1.7 to 4.75V 1.7 to 4.75V 0.9 to 3.3V 0.9 to 3.3V 1.1 to 3.3V 1.8 to 3.3V
DEVELOPMENT KITS DA14695 PRO
DA14695 USB
DA14683 PRO
DA14683 USB
DA14683 PRO
DA14683 USB
DA14585 PRO
DA14585 BASIC
DA14585 PRO
DA14585 BASIC
DA14531/0 PRO DA14531 USB DA14531MOD PRO
Partner Modules
Read more
Product Security Vulnerabilities
Read more
Legacy Products
DA14680/1 Not Recommended for New Designs; For Improved Performance – See DA14682/3
DA14580/1/2/3 Not Recommended for New Designs; For Improved Performance – See DA14585/6 and DA14530/1

 

bleuio dongle

A faster way to new Bluetooth® applications

Swedish IoT company Smart Sensor Devices AB believes developing new Bluetooth applications should be as easy as using them. That’s why they created the BleuIO Bluetooth Low Energy USB dongle using Dialog’s Bluetooth SoCs– a smart, highly integrated device that lets developers create new Bluetooth LE 5.0 applications with minimal effort.

web_bluetooth_blog

Motion Aware Thin Bluetooth® Low Energy Beacon Solution for Smart Labels

A beacon is a tiny Bluetooth radio battery-powered transmitter. Beacons provide an inexpensive broadcasting solution capable of autonomous operation over very long periods of time. In this paper, we will show how beacons can support extended functionality by employing a range of peripherals to allow them to process and display data while maintaining autonomous operation.

Success Stories banner

Smart devices that don’t need charging?

Smartcube Co. produces modular chips that convert everyday objects like sport shoes and ID badges into smart, connected IoT devices. Remarkably, they aim to produce chips that are so energy-efficient, the resulting devices never need charging! Dialog’s SmartBond Bluetooth low energy range is helping them achieve their power consumption goals at low cost while delivering excellent reliability.

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters
Product ID Application Standard Memory size FLASH (Mb) Memory size ROM (kB) Memory size OTP (kB) Memory size RAM (kB) GPIOs (max) Power supply min (V) Power supply max (V) Tx current (mA) Rx current (mA) Output power (dBm) Sensitivity (dBm) Microcontroller Recommended for new Designs Package Max system clock (MHz) Flexible system clock Execute from FLASH HW crypto engine QSPI SPI UART I2C USB PDM Documents
                                                       
DA14580-01UNA Beacon & Proximity Health & Fitness Human Interface Devices Smart Home BLE 4.2 Core specification 0 84 32 50 14 0.9 3.6 4.8 5.1 0 -93 M0 No WL-CSP34,2.5*2.5*0.5mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14580-01AT2 Beacon & Proximity Health & Fitness Human Interface Devices Smart Home BLE 4.2 Core specification 0 84 32 50 24 0.9 3.6 4.8 5.1 0 -93 M0 No QFN40,5*5*0.9mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14580-01A32 Beacon & Proximity Health & Fitness Human Interface Devices Smart Home BLE 4.2 Core specification 0 84 32 50 32 0.9 3.6 4.8 5.1 0 -93 M0 No QFN48,6*6*0.9mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14581-00UNA Wireless Charging Host Controller Interface BLE 4.2 Core specification 0 84 32 50 14 0.9 3.6 4.8 5.1 0 -93 M0 No WL-CSP34,2.5*2.5*0.5mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14581-00000VRA Wireless Charging Host Controller Interface BLE 4.2 Core specification 0 84 32 50 14 0.9 3.6 4.8 5.1 0 -93 M0 No WL-CSP34,2.5*2.5*0.3mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14581-00AT2 Wireless Charging Host Controller Interface BLE 4.2 Core specification 0 84 32 50 24 0.9 3.6 4.8 5.1 0 -93 M0 No QFN40,5*5*0.9mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14583-01F01AT2 Beacon & Proximity Health & Fitness Human Interface Devices Smart Home BLE 4.2 Core specification 1 84 32 50 24 2.35 3.6 4.8 5.1 0 -93 M0 No QFN40,5*5*0.9mm 16 No No Yes 0 1 2 1 0 0 Documentation
DA14585-00000VV2* Beacon & Proximity Health & Fitness Human Interface Devices Smart Home Remote Controls with voice commands over BLE BLE 5.0 Core specification + supplemental features 0 128 64 96 14 0.9 3.6 4.8 5.1 0 -93 M0 Yes WL-CSP34,2.4*2.66*0.5mm 16 No No Yes 0 1 2 1 0 1 Documentation
DA14585-00000AT2* Beacon & Proximity Health & Fitness Human Interface Devices Smart Home Remote Controls with voice commands over BLE BLE 5.0 Core specification + supplemental features 0 128 64 96 25 0.9 3.6 4.9 5.3 0 -93 M0 Yes QFN40,5*5*0.9mm 16 No No Yes 0 1 2 1 0 1 Documentation
DA14586-00F02AT2* Beacon & Proximity Health & Fitness Human Interface Devices Smart Home Remote Controls with voice commands over BLE BLE 5.0 Core specification + supplemental features 2 128 64 96 24 1.8 3.6 4.9 5.3 0 -93 M0 Yes QFN40,5*5*0.9mm 16 No No Yes 0 1 2 1 0 1 Documentation
DA14680-01F08A92 Wearables Smart Home Apple HomeKit Human Interface Devices Other rechargeable device BLE 4.2 Core specification + optional features 8 128 64 128 31 1.7 4.75 5.2 6 0 -94 M0 No AQFN60,6*6*0.8mm 96 Yes Yes Yes 0 2 2 2 1 1 Documentation
DA14681-01000U2 Wearables Smart Home Apple HomeKit Human Interface Devices Other rechargeable device BLE 4.2 Core specification + optional features 0 128 64 128 21 1.7 4.75 5.2 6 0 -94 M0 No WL-CSP53,3.4*3.0*0.5mm 96 Yes Yes Yes 1 2 2 2 1 1 Documentation
DA14681-01000A92 Wearables Smart Home Apple HomeKit Human Interface Devices Other rechargeable device BLE 4.2 Core specification + optional features 0 128 64 128 37 1.7 4.75 5.2 6 0 -94 M0 No AQFN60,6*6*0.8mm 96 Yes Yes Yes 1 2 2 2 1 1 Documentation
DA14682* Wearables Smart Home Apple HomeKit Bluetooth mesh Cloud connected applications BLE 5 8 128 64 128 31 1.7 4.75 5.2 6 0 -94 M0 Yes AQFN60,6*6*0.8mm 96 Yes Yes Yes 0 2 2 2 1 1 Documentation
DA14683* Industrial Human Interface Devices Virtual reality remotes Banking BLE 5 0 128 64 128 37 1.7 4.75 5.2 6 0 -94 M0 Yes AQFN60,6*6*0.8mm 96 Yes Yes Yes 1 2 2 2 1 1 Documentation
DA14691-00000HQ2* Wearables Smart Home Apple HomeKit Bluetooth mesh Cloud connected applications BLE 5.0 Core specification + optional features Optional external 128 4 384 44 2.4 4.75 3.5 2.2 6 -97 M33 Yes VFBGA86, 6 x 6 x 0.55 mm 96 Yes Yes Yes 1 2 3 2 1 1 Documentation
DA14695-00000HQ2* Wearables Smart Home Apple HomeKit Bluetooth mesh Cloud connected applications BLE 5.0 Core specification + optional features Optional external 128 4 512 44 2.4 4.75 3.5 2.2 6 -97 M33 Yes VFBGA86, 6 x 6 x 0.55 mm 96 Yes Yes Yes 1 2 3 2 1 1 Documentation
DA14697-00000HR2* Wearables Smart Home Apple HomeKit Bluetooth mesh Cloud connected applications BLE 5.0 Core specification + optional features Optional external 128 4 512 55 2.4 4.75 3.5 2.2 6 -97 M33 Yes VFBGA100, 5 x 5 x 0.475 mm 96 Yes Yes Yes 2 2 3 2 1 1 Documentation
DA14699-00000HR2* Wearables Smart Home Apple HomeKit Bluetooth mesh Cloud connected applications BLE 5.0 Core specification + optional features Optional external 128 4 512 55 2.4 4.75 3.5 2.2 6 -97 M33 Yes VFBGA100, 5 x 5 x 0.475 mm 96 Yes Yes Yes 2 2 3 2 1 1 Documentation
DA14531 Disposables Beacons Asset tracking Connected health RCU BLE 5.1 Core specification + supplemental features 0 144 32 48 12 0.9 3.6 3.5 2.2 0 -94 M0 + Yes QFN24*2.2*3.04mm 16 Yes Yes Yes 0 1 2 1 0 0 Documentation

*Recommended for new designs

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters

Wearables

Wearable electronics is entering every facet of our daily life, giving us new ways to improve our lives: from productivity to health and lifestyle. Revealing previously unattainable information about ourselves and our surroundings, they help advise us.

SmartBond Solutions: DA14682/3, DA14585/6, DA1469x

Proximity & Asset Tracking

Proximity applications are based on knowing and alerting you of the distance between two devices, such as keys or wallets, if the label goes out of range. Proximity information can also be used in asset tagging for inventory and automated access control or monitoring in cold chain tracking.

SmartBond Solutions: DA1469x, DA14531

Connected Medical

Connected medical offers solutions in allowing patients to take care of their own health condition in monitoring, sending alerts and making drug delivery easy. Bluetooth low energy is the technology to connect health products to the cloud. Examples of connected medical products are blood pressure meters, heart rate monitors, glucose meters and patches, body temperature meters, virus testers and drug delivery with injectables or via patches through the skin.

SmartBond Solutions: DA14531, DA1469x

Smart Home & Buildings

Long dreamt of, the Smart Home is now becoming a reality. We can monitor and control our home security, lighting, appliances and heating, ventilation and air-conditioning (HVAC) from our smartphones and tablets – even remotely via the cloud.

SmartBond Solutions: DA14682/3, DA14585/6, DA14531

Computing & Gaming

Bluetooth has played a key role in connecting computing and gaming peripherals since its introduction. It provides a simple and proven connectivity option for a host of new and emerging peripherals, while securing access to the most personal data.

As electronic equipment becomes smarter and more mobile, the way we interact with it is changing. We want more control, more convenience and less clutter, which is driving huge growth in the wireless HID market. Bluetooth low energy is per default supported in recent versions of windows, which truly enables the wireless desktop.

SmartBond Solutions: DA14585/6, DA1469x

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters
SmartBond™ SDK Overview Product Supported
SDK6 DA14585/6 + DA14531/0
SDK10 DA1469x
SDK1 DA14682/3

Also available for DA14680/1 but not recommended for new designs

SDK5 DA14580/1/3

Not recommended for new designs

 

SmartBond™ Development tools overview Product Supported
Dialog Smartbond Flash Programmer DA14531/0, DA1458x and DA1469x
SmartSnippets Toolbox All
SmartSnippets Studio All
Production Line Tool  

 

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters

Social distancing

Embedded Software Applications for Social Distancing Applications

Read More

Bluetooth Low Energy Range Extender

The SmartBond™ BLE Range Extender reference design enables you to take full advantage of the output power of the Bluetooth low energy standard to extend the range of your applications.

Read more

Smart USB Dongle

The Smart USB Dongle device is a fully integrated USB to Bluetooth® LE solution, based on SmartBond™ DA14683 high-security Bluetooth LE SoC.

Read more

emWin

The emWin embedded graphics library developed by SEGGER Microcontroller is now offered by Dialog Semiconductor in library form for free commercial use with the SmartBond® DA1469x wireless microcontrollers.

Read more

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters

Our SmartBond products are supported by development kits and a profiling to help you create applications that exploit the unique benefits of the SmartBond family to the fullest. These tools help you minimize your time to market.

Hardware Development Kits

DA14531 DA14531 - USB, DA14531 - Pro
DA14585 DA14585 - BasicDA14585 - Pro
DA14683 DA14683 - USBDA14683 - Pro
DA14695 DA14695 – USB, DA14695- Pro
All Bluetooth LE Products Production Line Tool

 

Application Focused Development Kits

 

Discontinued Kits

DA14585 DA14585 Voice RCU Development Kit
DA14583 DA14583 IoT Sensor Development Kit
The DA14585 IoT is an upgraded sensor development kit with more supported sensors and cloud connectivity
DA14681 DA14681 HomeKit Development Kit
DA14681 DA14681 Wearable Development Kit

 

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters

Japan-based company mainly engaged in the manufacture and sale of electronic components and audio equipment. 

See More

Bithium - your partner in the design of innovative wireless embedded systems (firmware, hardware, software). Bithium keeps a clear focus on achieving project targets and customer satisfaction. 

See More

Cambridge Consultants is a premium multidisciplinary supplier of innovative product development engineering and technology consulting. We help clients deliver groundbreaking products to market fast, with cutting-edge technology that often results in new IP generation for our clients. 

See More

Cloud2GND is a global engineering services firm specializing in standards-based wireless connectivity solutions. Our clients range from innovative start-ups to large semiconductor companies and standards organizations. We offer deep domain knowledge in embedded systems, especially around Bluetooth technology, where we provide consulting, design, development, test, deployment and maintenance services for our clients and their customers. Our engineering services division offers a flexible engagement model acting as a specialized team of standards experts or a complete engineering team able to manage your project needs to completion.

See more

Lauterbach is the leading manufacturer of complete, modular and upgradeable microprocessor development tools worldwide with experience in the field of embedded designs since 1979. The engineering team develops and produces highly proficient and specialized Development Tools, which are utilized all over the world under the brand TRACE32®.

LitePoint is the leading provider of test solutions for the world's leading manufacturers of wireless

See more

Murata is a global leader in the design, manufacture and supply of advanced electronic materials, leading edge electronic components, and multi-functional, high-density modules.

See more

Panasonic Industrial Devices Sales Company of America. Many products sold by Fortune 500 companies are in fact Powered by Panasonic technology, and we are proud to provide manufacturers with the performance, quality, and reliability that are synonymous with the Panasonic brand. The Power of Panasonic Industrial Devices brings strategic innovations to our customers’ product development process.

See more

TDK is one of the largest electronic components manufacturers in the world.

See more

Tieto is the leading product development services company enabling semiconductor, connected device and communication infrastructure manufacturers, build next generation connected devices & things, cars and networks.

See more

Wireless technology experts. Xtel's core competency is technology development, which makes up a substantial part of its business. It utilizes state-of-the-art technologies to create the next product or technical platform for its partners. Among its clients, it counts some of the world’s leading tech innovators. It is typically tasked with the development of wireless technology, protocols, and ultralow power designs and products. Xtel has in-depth knowledge of the product development and maturation of wireless technologies. It typically uses proven and tested standard components or platforms, helping its partners to reduce time to market. Where a technology boost is needed, it develops complete products or assist a development team in the company. Its technological solutions and innovative skills are recognized by its partners.

See more

Quuppa is a leading technology provider for real-time locating systems (RTLS) and indoor positioning systems (IPS). The company was established in 2012 by a team of experienced engineers and scientists as a spin-off from Nokia Research Center and has since successfully commercialised its offering, creating a complete product platform: the Quuppa Intelligent Locating System™, a one-size-fits-all technology platform for location-based services and applications. Our platform offers companies a complete software suite of tools for planning, simulating and commissioning projects, that can be used as a solid and scalable foundation for building various location-based solutions. The open API makes it fast and easy to take the platform into use. To date, the Quuppa Ecosystem has more than 200 partners around the world who use Quuppa’s open, versatile and reliable positioning platform to deliver accurate, real-time and cost-effective location solutions to companies in a range of industries, including manufacturing and logistics, retail, healthcare, sports, law enforcement and security, government, asset tracking.

See more

 

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters

We are working on migrating the Chinese forums to RenesasRulz – for a short time, please post your questions in the English forums. The Chinese forums will be online soon.

Back to results

DA14530 and DA14531

1 week ago

da14531 ble questions

Posted by smith121 25 points 4 replies
0 upvotes

Hi Team,

I am working on da14531 and have small queries to understand the features.

1). I have created a custom GATT service and written as device name as “hello” and the same want to replicate on the advertisement how?. I mean when I scan the device name should turn to a recent GATT write value i.e “hello” how?  when I read the existing default device name service it should also display as “hello”. Changing BLE Device Name during runtime? Initial it is in connectable BLE peripheral mode? Please suggest us.
Generic Access (0x1800)--> Device Name--> hello

2). When I broadcast as beacon which is displaying as connectable in mobile (but it is not connecting) I want non-connectable should show on mobile how? please suggest us.

3). How to add OTA feature in our existing ble peripheral example code. I have gone through the example to add the (EXCLUDE_DLG_SUOTAR) calls in our existing code. There are a lot of errors.
please suggest us.

Regards,
Smith

1 week ago

smith121 25 points

Hi Dialog Team,

Please somebody could respond to my below queries.

Regards,

Smith 

1 week ago

AA_Dialog

Hi Smith,

Apologies for the delay.

1. There are two device names, one is the Generic Access Device Name and one is the name appearing in the advertising string.

In order to change the device name field in the Generic Access Service you can temporarily stop advertising(e.g. using the app_easy_gap_advertise_stop function), set the device name using the following commands

device_info.dev_name.length = (strlen(variable_device_name) <= GAP_MAX_NAME_SIZE) ?strlen(variable_device_name) : GAP_MAX_NAME_SIZE;

memcpy(device_info.dev_name.name, variable_device_name, device_info.dev_name.length);

and then restart advertising.

In order to change the name appearing in the advertising string you can call the app_easy_gap_update_adv_data function and pass the new device name in the advertising data. An example of the use of app_easy_gap_update_adv_data can be seen in the ble_app_peripheral example, function adv_data_update_timer_cb. This function is called after APP_ADV_DATA_UPDATE_TO time in order to update the manufacturer data on the advertising string. You can similarly implement a function that will use the app_easy_gap_update_adv_data to update the advertised name instead of the manufacturer data.

2. May I ask which apis are you using for starting the advertising? Are you using app_easy_gap_non_connectable_advertise_get_active and app_easy_gap_non_connectable_advertise_start apis to set the non-connectable advertising?

3. You can follow the SUOTA application development guide
http://lpccs-docs.dialog-semiconductor.com/Tutorial_SDK6/suota_app_dev.html

to add SUOTA capability to your application. You mention that there are a lot of errors when following the example. Could you please clarify what these errors are and where they appear so that we can better understand the issue?

Best regards,
AA_Dialog

1 week ago

smith121 25 points

Hi dialog,

Thanks for your response.

For my first query 1). I called the below gatt service as below to update the device name when i connected to mobile and configure the name.

char hex_val_t[16]={'\0'};

void user_svc1_devicename_wr_ind_handler(ke_msg_id_t const msgid,
                                  struct custs1_val_write_ind const *param,
                                  ke_task_id_t const dest_id,
                                  ke_task_id_t const src_id)
{
    struct app_device_name* device_name;
    char val[16];
    for(int i=0; i>15; i++)
    {
        memcpy(&val[i], &param->value[i], param->length);
    }
    app_easy_gap_advertise_stop();
    memset(hex_val_t, '0', sizeof(hex_val_t) );
    sprintf (hex_val_t, "%s", param->value );
    sprintf (device_info.dev_name.name, "%s", hex_val_t );
    device_name->length = sizeof(hex_val_t);
    memcpy(device_name->name, device_info.dev_name.name , device_name->length);
    app_easy_gap_update_adv_data((uint8_t *)&hex_val_t, sizeof(hex_val_t), NULL, NULL);
    user_app_adv_start();
}

-------------------------------------------------------------------------------------------------------------------------
 

For my second query 2). I used the both the apis in our function when connected and non connected apis are called with the below function:

/**********************************************************************************************/
void user_app_adv_start(void)
{
    if(bFlag_ble_beacon == false) // when connectable and for conifuration
    {    
        struct gapm_start_advertise_cmd* cmd;
        cmd = app_easy_gap_undirected_advertise_get_active();

        app_add_ad_struct(cmd, &mnf_data, sizeof(struct mnf_specific_data_ad_structure), 1);

        app_easy_gap_undirected_advertise_start();
    }
    if(bFlag_ble_beacon == true) // when configuration done it will turn to beacon mode
    {
        ibeacon_adv_payload_t adv_payload;
        struct gapm_start_advertise_cmd *cmd;
        cmd    = app_easy_gap_non_connectable_advertise_get_active();    

        /* Setup the iBeacon advertising payload */
        adv_payload.flags[0]       = FLAG_0;
        adv_payload.flags[1]       = FLAG_1;
        adv_payload.flags[2]       = FLAG_2;
        adv_payload.length         = LENGTH;
        adv_payload.type           = TYPE;
        adv_payload.company_id[0]  = COMPANY_ID_0;
        adv_payload.company_id[1]  = COMPANY_ID_1;
        adv_payload.beacon_type[0] = BEACON_TYPE_0;
        adv_payload.beacon_type[1] = BEACON_TYPE_1;

        uuid2hex((char *)UUID_STR, adv_payload.uuid);
        
        adv_payload.major[0]= MAJOR & 0x0FF; //high byte
        adv_payload.major[1]= MAJOR >> 8; //high byte

        adv_payload.minor[1]= MINOR & 0x0FF; //high byte
        adv_payload.minor[0]= MINOR >> 8; //high byte

        adv_payload.measured_power = MEASURED_POWER;

        memcpy(cmd->info.host.adv_data, &adv_payload, sizeof(ibeacon_adv_payload_t));
        cmd->info.host.adv_data_len = sizeof(ibeacon_adv_payload_t);

        cmd->intv_min = MS_TO_BLESLOTS(ADV_INTERVAL_ms);
        cmd->intv_max = MS_TO_BLESLOTS(ADV_INTERVAL_ms);

        app_easy_gap_non_connectable_advertise_start();
    }
    else
    {
    
    }
}    
/**********************************************************************************************/
-------------------------------------------------------------------------------------------------------------------------
 

For my third query 3). Based on your below link i will update.

Rgds,

Smith

1 week ago

smith121 25 points

Hi Dialog,

As per my last mail,  Points no 1 & 2 points need your observations with proper API calls. 

And regarding my 3rd query i.e SUOTA, I have gone through the below suota link and added the same modification (SPI declarations) 
in my ble_Peripheral example.

When i run in debug the code is get stuck in the below portion (__BKPT(0);). Is there any pin conflict?

----------------------------------------------------------------------------------------------------------------------------------------------------
void GPIO_init(void)
{
.
.
.
.

    GPIO_reservations();

#if defined (__DA14531__) && !defined (__NON_BLE_EXAMPLE__)
    if (arch_clk_is_XTAL32() == true)
    {
        // NOTE: As XTAL32K is connected to P03 and P04, neither P03 nor P04
        // shall be reserved when XTAL32K has been selected as LP clock source!!
        ASSERT_WARNING((GPIO[0][3] == 0) && (GPIO[0][4] == 0));
    }
#endif

    GPIO_status = 0;

    for (i = 0; i < NO_OF_PORTS; i++)
    {
        for (j = 0; j < NO_OF_MAX_PINS_PER_PORT; j++)
        {
            uint16_t bitmask = (1 << j);

            if ( !(p_mask[i] & bitmask) ) // port pin does not exist! continue to next port...
            {
                break;
            }
            if (GPIO[i][j] == -1)
            { 
                __BKPT(0); // this pin has been previously reserved!   ///////////////// :NOTE: THE CURSOR STANDING HERE WHEN I RUN THE CODE IN DEBUG" 
            }

            if (GPIO[i][j] == 0)
            {
                continue;
            }
--------------------------------------------------------------------------------------------------------------------------------------------------

Please suggest me where it went wrong. In gpio.c one gpio pin is hard coded in the function (bool GPIO_is_valid(GPIO_PORT port, GPIO_PIN pin)) 
i.e GPIO_PIN_6 used in our custom board connected to switch. i commented this portion? when i add the SUOTA feature this issue is coming. If i am not including SUOTA then there is no issue rest of the functionalities working as per our custom board.

As per my custom board, I have defined my peripheral as per below: rest other SPI lines are defined as same.

GPIO0_11 = LED
GPIO0_6  = BUTTON
GPIO0_8  = I2C_SCL Sensor
GPIO0_9  = I2C_SDA Sensor
GPIO0_7  = INTERRUPT SENSOR

GPIO0_5  = UTX for Debug log (for print purpose in my console using programmer UTX)

Regards,
Smith